rsc3/doc-schelp/HelpSource/Classes/TDuty.schelp

160 lines
3 KiB
Text
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

class:: TDuty
summary:: Demand results as trigger from demand rate UGens.
related:: Classes/Demand, Classes/Duty
categories:: UGens>Demand
Description::
A value is demanded each UGen in the list and output as a trigger
according to a stream of duration values. The unit generators in the list
should be 'demand' rate.
When there is a trigger at the reset input, the demand rate UGens in the
list and the duration are reset. The reset input may also be a demand
UGen, providing a stream of reset times.
classmethods::
method::ar, kr
argument::dur
Time values. Can be a demand UGen or any signal. The next trigger
value is acquired after duration.
argument::reset
Trigger or reset time values. Resets the list of UGens and the
duration UGen when triggered. The reset input may also be a
demand UGen, providing a stream of reset times.
argument::level
Demand UGen providing the output values.
argument::doneAction
A doneAction that is evaluated when the duration stream ends. See
link::Classes/Done:: for more detail.
argument::gapFirst
when 0 (default), the UGen does the first level poll immediately and then waits for the first durational value. When this is 1, the UGen initially polls the first durational value, waits for that duration, and then polls the first level (along with polling the next durational value). So gapFirst > 0 makes TDuty behave like link::Classes/TDuty_old::.
Examples::
code::
// examples
s.boot;
// play a little rhythm
{ TDuty.ar(Dseq([0.1, 0.2, 0.4, 0.3], inf)) }.play; // demand ugen as durations
// amplitude changes
(
{
var trig;
trig = TDuty.ar(
Dseq([0.1, 0.2, 0.4, 0.3], inf), // demand ugen as durations
0,
Dseq([0.1, 0.4, 0.01, 0.5, 1.0], inf) // demand ugen as amplitude
);
Ringz.ar(trig, 1000, 0.1)
}.play;
)
(
{
var trig;
trig = TDuty.ar(
MouseX.kr(0.001, 2, 1), // control rate ugen as durations
0,
Dseq([0.1, 0.4, 0.01, 0.5, 1.0], inf)
);
Ringz.ar(trig, 1000, 0.1)
}.play;
)
// demand ugen as audio oscillator
(
{
var a, trig, n=5, m=64;
a = {
var x;
x = { 0.2.rand2 } ! m;
x = x ++ ({ Drand({ 0.2.rand2 } ! n) } ! m.rand);
Dseq(x.scramble, inf)
} ! n;
trig = TDuty.ar(
MouseX.kr(1, 2048, 1) * SampleDur.ir * [1, 1.02],
0,
Dswitch1(a, MouseY.kr(0, n-1))
);
Ringz.ar(trig, 1000, 0.01)
}.play;
)
// single impulses
(
SynthDef("delta_demand", { arg amp=0.5, out;
OffsetOut.ar(out,
TDuty.ar(Dseq([0]), 0, amp, 2)
)
}).add;
)
fork { 10.do { s.sendBundle(0.2, ["/s_new", "delta_demand", -1]); 1.0.rand.wait } };
// chain of impulses
(
SynthDef("delta_demand2", {
OffsetOut.ar(0,
TDuty.ar(Dgeom(0.05, 0.9, 20), 0, 0.5, 2)
)
}).add;
)
fork { 10.do { s.sendBundle(0.2, ["/s_new", "delta_demand2", -1]); 1.0.rand.wait } };
// multichannel expansion
(
{
var t;
t = TDuty.ar(
Drand([Dgeom(0.1, 0.8, 20), 1, 2], inf) ! 2,
0,
[Drand({ 1.0.rand } ! 8, inf), Dseq({ 1.0.rand } ! 8, inf)] * 2
);
x = Ringz.ar(t, [400, 700], 0.1) * 0.1;
}.play;
)
::