56 lines
1.3 KiB
Racket
56 lines
1.3 KiB
Racket
#lang scribble/manual
|
|
@(require (for-label racket))
|
|
|
|
@title{SpecCentroid}
|
|
Spectral centroid@section{categories}
|
|
UGens>FFT
|
|
@section{related}
|
|
Classes/SpecFlatness, Classes/SpecPcile
|
|
|
|
@section{description}
|
|
|
|
Given an link::Classes/FFT:: strong::chain::, this measures the emphasis::spectral:: centroid, which is the weighted mean frequency, or the "centre of mass" of the spectrum. (DC is ignored.)
|
|
|
|
This can be a useful indicator of the perceptual emphasis::brightness:: of a signal.
|
|
|
|
@section{classmethods}
|
|
|
|
@section{method}
|
|
kr
|
|
|
|
@section{argument}
|
|
buffer
|
|
an link::Classes/FFT:: chain.
|
|
|
|
@section{examples}
|
|
|
|
|
|
A link::Classes/Blip:: oscillator is ideal for demonstrating this because the number of harmonics is directly manipulated: as the number of harmonics increases, the centroid is pushed higher. In the example, left-to-right changes the number of harmonics, but up-to-down changes the fundamental pitch; note the different effects of these two on the centroid.
|
|
|
|
|
|
@racketblock[
|
|
s.boot;
|
|
b = Buffer.alloc(s,2048,1);
|
|
(
|
|
x = {
|
|
var in, chain, freq, rq, centroid;
|
|
|
|
//freq = LFPar.kr(0.3).exprange(100, 1000);
|
|
freq = MouseY.kr(1000, 100, 1);
|
|
|
|
in = Blip.ar(freq, MouseX.kr(1, 100, 1));
|
|
|
|
chain = FFT(b, in);
|
|
|
|
centroid = SpecCentroid.kr(chain);
|
|
|
|
Out.ar(0, in.dup * 0.1);
|
|
centroid.poll(10);
|
|
}.play(s);
|
|
)
|
|
|
|
x.free;
|
|
::
|
|
]
|
|
|
|
|