99 lines
2.6 KiB
Text
99 lines
2.6 KiB
Text
CLASS::Set
|
|
summary::a set according to equality
|
|
related::Classes/IdentitySet, Classes/List, Classes/Dictionary
|
|
categories::Collections>Unordered
|
|
|
|
DESCRIPTION::
|
|
A Set is s collection of objects, no two of which are equal. Most of its methods are inherited from Collection. The contents of a Set are unordered. You must not depend on the order of items in a set. For an ordered set, see link::Classes/OrderedIdentitySet::.
|
|
|
|
INSTANCEMETHODS::
|
|
|
|
private::initSet, putCheck, fullCheck, grow, noCheckAdd
|
|
|
|
subsection::Adding and Removing
|
|
|
|
method::add
|
|
Add anObject to the Set. An object which is equal to an object already in the Set will not be added.
|
|
code::
|
|
Set[1, 2, 3].add(4).postln;
|
|
Set[1, 2, 3].add(3).postln;
|
|
Set["abc", "def", "ghi"].add("jkl").postln;
|
|
Set["abc", "def", "ghi"].add("def").postln;
|
|
::
|
|
|
|
method::remove
|
|
Remove anObject from the Set.
|
|
code::
|
|
Set[1, 2, 3].remove(3).postln;
|
|
::
|
|
|
|
subsection::Iteration
|
|
|
|
method::do
|
|
Evaluates function for each item in the Set. The function is passed two arguments, the item and an integer index.
|
|
code::
|
|
Set[1, 2, 3, 300].do({ arg item, i; item.postln });
|
|
::
|
|
|
|
method::keyAt
|
|
Returns the object at the internal strong::index::. This index is not deterministic.
|
|
|
|
subsection::Set specific operations
|
|
|
|
method::sect, &
|
|
Return the set theoretical intersection of this and strong::that::.
|
|
code::
|
|
a = Set[1, 2, 3]; b = Set[2, 3, 4, 5];
|
|
sect(a, b);
|
|
a & b // shorter syntax
|
|
::
|
|
|
|
method::union, |
|
|
Return the set theoretical union of this and strong::that::.
|
|
code::
|
|
a = Set[1, 2, 3]; b = Set[2, 3, 4, 5];
|
|
union(a, b);
|
|
a | b // shorter syntax
|
|
::
|
|
|
|
method::difference, -
|
|
Return the set of all items which are elements of this, but not of strong::that::.
|
|
code::
|
|
a = Set[1, 2, 3]; b = Set[2, 3, 4, 5];
|
|
difference(a, b);
|
|
a - b // shorter syntax
|
|
::
|
|
|
|
method::symmetricDifference, --
|
|
Return the set of all items which are not elements of both this and strong::that::.
|
|
code::
|
|
a = Set[1, 2, 3]; b = Set[2, 3, 4, 5];
|
|
symmetricDifference(a, b);
|
|
a -- b // shorter syntax
|
|
::
|
|
|
|
method::isSubsetOf
|
|
Returns true if all elements of this are also elements of strong::that::.
|
|
code::
|
|
a = Set[1, 2, 3, 4];
|
|
Set[1, 2].isSubsetOf(a); // true
|
|
Set[1, 5].isSubsetOf(a); // false
|
|
::
|
|
|
|
EXAMPLES::
|
|
|
|
code::
|
|
a = Set[1, 2, 3, 4];
|
|
b = a.powerset; // set of all parts
|
|
a.isSubsetOf(b); // false: no set is ever part of itself.
|
|
b.asArray.reduce(\union) == a; // true parts may not contain other elements that original
|
|
b.asArray.reduce(\difference).isEmpty; // true.
|
|
::
|
|
|
|
code::
|
|
// you can use Set to efficiently remove duplicates from an array:
|
|
|
|
a = [1, 2, 3, 4, 3, 5, 5, 2, 2, 1];
|
|
a.as(Set); // convert to set
|
|
a.as(Set).as(Array); // and convert back
|
|
::
|