rsc3/doc-schelp/HelpSource/Classes/Maybe.scrbl

243 lines
5 KiB
Racket

#lang scribble/manual
@(require (for-label racket))
@title{Maybe}
referentially transparent proxy object@section{categories}
Libraries>JITLib>Environments, Live Coding
@section{related}
Classes/Fdef, Overviews/JITLib
@section{description}
A Maybe object can contain either nil or some other object, and allows to construct calculations without knowing this other object yet. If the calculation fails, due to a loop or a not yet defined object, Maybe returns nil.
The name strong::Maybe:: stems from the programming language Haskell, where it represents a somewhat similar entity. See also: link::Classes/Fdef::
@section{ClassMethods}
@section{method}
new
create a new instance
@section{argument}
thing
an object or nil.
@racketblock[
a = Maybe.new;
b = Maybe(a + 6);
b.value; // => nil
a.value = 1;
b.value; // => 7
::
]
@section{InstanceMethods}
@section{method}
source
return or set the contained object
@section{method}
value
set the contained object or return the source, or the value of the contained object, if it is a Maybe. If there is a recursion, return nil.
@section{method}
apply
return the value, or the value of the contained object, if it is a Maybe. This method allows recursion, so that recursive calculations can be made.
@section{method}
doesNotUnderstand
(called by any message that Maybe doesn't understand.)
returns a composition function that, when evaluated, returns the value.
@racketblock[
a = Maybe.new;
a.respondsTo(\flop) // false: Maybe constructs a placeholder instead
b = Maybe(a.flop);
b.value; // => nil
a.value = [1, 2, [2, 3]];
b.value; // => [ [ 1, 2, 2 ], [ 1, 2, 3 ] ]
::
]
@section{Examples}
@racketblock[
// the following examples use a LazyEnvir with a Maybe as a proxy class.
// instead of writing a = Maybe.new; a.value = something;
// one can simply write ~a = something.
// the Maybe is implicitly created for you.
(
p.pop.clear;
p = LazyEnvir.new;
p.proxyClass = Maybe;
p.linkDoc; // here: connect to current doc only.
);
// sets
~a = Set[0, 4, 5, 7];
~b = Set[4, 5];
~c = ~a union: ~b; // union of the two sets (note that the shortcut | does not work here.).
~d = ~a sect: ~b; // intersection of a and b
~c.postcs;""; // post the whole construction
~d.postcs;"";
~c.value; // Set[ 4, 0, 5, 7 ]
~d.value; // Set[ 4, 5 ]
~b = Set[4, 5, 13, 0];
~c.value;
~d.value; // Set[ 4, 0, 5 ]
~b.source.add(~w); // add another placeholder
~c.value; // it is part of the union.
~d.value; // but not part of the intersection
// envirs
~a = (note: [1, 2]);
~b = (dur: 1);
~c = ~a.putAll(~b) // provisionally put everything into the placholder
~c.value;
~a = (note: [1, 2, 4]);
~c.value;
~d = ~a.at(\note);
~d.value;
~a = (note: [7.5]);
~d.value; // [7.5]
// patterns
~a = Pseq([1, 2, 3]);
~b = Pseq([5, ~a, ~a + 10], inf);
~b.value.asStream.nextN(10);
~a = Prand([100, 200]);
~b.value.asStream.nextN(10);
// to do : flop!
//////////////// deep recursion
// with normal functions:
f = { |x| if(x <= 1) { 1 } { x * f.(x - 1) } };
f.(12)
~faculty = { |x| if(x == 1) { 1 } { x * ~faculty.(x - 1) } };
~faculty.(12) // doesn't work (=> nil). here we _do_ want recursion ...
// for explicit recursion use "apply"
~faculty = { |x| if(x == 1) { 1 } { x * ~faculty.apply(x - 1) } };
~faculty.(12)
/*// safety (not yet implemented)
Maybe.maxDepth = 1e2; // higher depth is risky..
~faculty = { |x| x * ~faculty.apply(x - 1) }; // infinite recursion
~faculty.(12)
Maybe.maxDepth = nil; // unsafe again.*/
//////////////// recursion prevention tests
~b = ~a;
~a = ~b;
~a.value; // => nil
~a = ~b;
~b = ~c;
~c = ~a;
~a.value; // => nil
~a = ~b + ~c;
~c = ~a;
~a.value; // => nil
~a = ~b;
~b = 19;
~a.value; // => 19
~b.value; // => 19
// function evaluation and argument passing
~a = { |x| x + 2 };
~a.value; // => nil
~a.value(~c); // => nil
~b = 2000;
~a.value(~b); // => 2002
~x = [600, 1000];
(~a + 1).value(~b); // 2003
(~a + 1).value(~x); // [ 603, 1003 ]
(~a + 1).value({ 8 }); // binary op func.
(~a + 1).value({ 5 + 3 }).value // 11
~a = { |x| x + 2 + ~b };
~a.value(8); // 2010
~c = nil;
~a = { |x| x + 2 + ~c }; // ~c is undefined.
~a.value(8); // => nil
~c = 100; // define ~c
~a.value(8); // now returns a value.
~c = ~b; // now recursion?
~b = ~a;
~a.value(8); // caught recursion => nil
~c = { 100.rand }; // ~c is a function
~a.value(8);
~a.value(8);
~c = { ~a + ~b };
~a.value(8); // ~c is a recursion with ~a => nil
// function composition
~a = {|x| x + 1 };
~v = ~a <> ~a <> ~a; // same as: { ~a.(~a.(~a)) }
~v.value(0); // => 3
~a = {|x| x + 2 };
~v.value(0); // transparent. => 6
// {|x| x }.valueEnvir // doesn't work with current implementation of Function:valueEnvir
// calculations with functions:
~c = 0;
~a = { |ff| { ff = ff + 1; ~c + ff + 2 + ~c } };
~x = ~a.value(8);
~x.value; // return 11, 12, 13...
~x.value;
~x.value;
~c = 100;
~x.value; // return 214, 215 ...
~x.value;
// binary op functions:
~c = 0;
~a = { |ff| { [600, 800] } + { ff + 2 + ~c } };
~x = ~a.value(8);
~x.value; // return [ 610, 810 ]
~c = { [10, -10].rand };
~x.value; // return random between [ 610..620, 800..810 ]
::
]