rsc3/doc-schelp/HelpSource/Classes/LFPar.schelp

79 lines
1.9 KiB
Text

class:: LFPar
summary:: Parabolic oscillator
related:: Classes/LFCub, Classes/LFPulse, Classes/LFSaw, Classes/LFTri
categories:: UGens>Generators>Deterministic
Description::
A sine-like shape made of two parabolas and the integral of a triangular wave. It has audible odd harmonics and is non-band-limited.
Output ranges from -1 to +1.
classmethods::
method::ar, kr
argument::freq
Frequency in Hertz.
argument::iphase
Initial phase in cycles ( 0..1 ).
argument::mul
Output will be multiplied by this value.
argument::add
This value will be added to the output.
Examples::
code::
// a plot
{ LFPar.ar(Line.kr(100, 800, 0.1)) }.plot(0.1);
// 440 Hz wave
{ LFPar.ar(440) * 0.1 }.play;
// modulating frequency:
{ LFPar.ar(XLine.kr(100, 2000, 10)) * 0.1 }.play;
// amplitude modulation:
{ LFPar.kr(XLine.kr(1, 200, 10)) * SinOsc.ar(440) * 0.1 }.play;
// used as both Oscillator and LFO:
{ LFPar.ar(LFPar.kr(3, 0.3, 200, 400)) * 0.1 }.play;
// used as phase modulator (behaves like a triangular modulator in FM):
// Compare:
{SinOsc.ar(440, LFPar.ar(1, 2, mul: 8pi))}.play
{SinOsc.ar(440 + LFTri.ar(1, mul: 8pi))}.play
// more examples:
{ LFPar.ar(LFPar.kr(LFPar.kr(0.2,0,8,10), 0, 400,800),0,0.1) }.play
{ LFPar.ar(LFPar.kr(0.2, 0, 400,800),0,0.1) }.play
{ LFPar.ar(800,0,0.1) }.play
{ LFPar.ar(XLine.kr(100,8000,30),0,0.1) }.play
// compare:
{ LFCub.ar(LFCub.kr(LFCub.kr(0.2,0,8,10),0, 400,800),0,0.1) }.play
{ LFCub.ar(LFCub.kr(0.2, 0, 400,800),0,0.1) }.play
{ LFCub.ar(800,0,0.1) }.play
{ LFCub.ar(XLine.kr(100,8000,30),0,0.1) }.play
{ SinOsc.ar(SinOsc.kr(SinOsc.kr(0.2,0,8,10),0, 400,800),0,0.1) }.play
{ SinOsc.ar(SinOsc.kr(0.2, 0, 400,800),0,0.1) }.play
{ SinOsc.ar(800,0,0.1) }.play
{ SinOsc.ar(XLine.kr(100,8000,30),0,0.1) }.play
{ LFTri.ar(LFTri.kr(LFTri.kr(0.2,0,8,10),0, 400,800),0,0.1) }.play
{ LFTri.ar(LFTri.kr(0.2, 0, 400,800),0,0.1) }.play
{ LFTri.ar(800,0,0.1) }.play
{ LFTri.ar(XLine.kr(100,8000,30),0,0.1) }.play
::