rsc3/doc-schelp/HelpSource/Classes/FBSineN.scrbl

114 lines
1.9 KiB
Racket

#lang scribble/manual
@(require (for-label racket))
@title{FBSineN}
Feedback sine with chaotic phase indexing@section{categories}
UGens>Generators>Chaotic
@section{related}
Classes/FBSineL, Classes/FBSineC
@section{description}
A non-interpolating sound generator based on the difference equations:
teletype::
x(n+1) = sin(im * y(n) + fb * x(n))
y(n+1) = (a * y(n) + c) % 2pi
::
This uses a linear congruential function to drive the phase indexing of a sine wave. For
@racketblock[ im = 1 ::, ]
@racketblock[ fb = 0 ::, and ]
@racketblock[ a = 1 :: a normal sinewave results.
sclang code translation:
]
@racketblock[
(
var im = 1, fb = 0.1, a = 1.1, c = 0.5, xi = 0.1, yi = 0.1, size = 64;
plot(size.collect { xi = sin((im * yi) + (fb * xi)); yi = (a * yi + c) % 2pi; xi });
)
::
]
@section{classmethods}
@section{method}
ar
@section{argument}
freq
Iteration frequency in Hertz
@section{argument}
im
Index multiplier amount
@section{argument}
fb
Feedback amount
@section{argument}
a
Phase multiplier amount
@section{argument}
c
Phase increment amount
@section{argument}
xi
Initial value of x
@section{argument}
yi
Initial value of y
@section{argument}
mul
@section{argument}
add
@section{examples}
@racketblock[
// default initial params
{ FBSineN.ar(SampleRate.ir/4) * 0.2 }.play(s);
::
]
@racketblock[
// increase feedback
{ FBSineN.ar(SampleRate.ir, 1, Line.kr(0.01, 4, 10), 1, 0.1) * 0.2 }.play(s);
::
]
@racketblock[
// increase phase multiplier
{ FBSineN.ar(SampleRate.ir, 1, 0, XLine.kr(1, 2, 10), 0.1) * 0.2 }.play(s);
::
]
@racketblock[
// modulate frequency and index multiplier
{ FBSineN.ar(LFNoise2.kr(1, 1e4, 1e4), LFNoise2.kr(1,16,17), 1, 1.005, 0.7) * 0.2 }.play(s);
::
]
@racketblock[
// randomly modulate params
(
{ FBSineN.ar(
LFNoise2.kr(1, 1e4, 1e4),
LFNoise2.kr(1, 32, 33),
LFNoise2.kr(1, 0.5),
LFNoise2.kr(1, 0.05, 1.05),
LFNoise2.kr(1, 0.3, 0.3)
) * 0.2 }.play(s);
)
::
]