rsc3/doc-schelp/HelpSource/Classes/AmpCompA.scrbl

189 lines
3.5 KiB
Racket

#lang scribble/manual
@(require (for-label racket))
@title{AmpCompA}
Basic psychoacoustic amplitude compensation (ANSI A-weighting curve).@section{related}
Classes/AmpComp
@section{categories}
UGens>Analysis>Amplitude
@section{description}
Higher frequencies are normally perceived as louder, which AmpCompA
compensates. Following the measurements by Fletcher and Munson, the
ANSI standard describes a function for loudness vs. frequency.
Note that this curve is only valid for standardized amplitude.
@section{footnote}
Function freq dB,
derived from http://www.beis.de/Elektronik/AudioMeasure/WeightingFilters.html
and modified to map freq amp.
@racketblock[
(
var k = 3.5041384e16;
var c1 = 424.31867740601;
var c2 = 11589.093052022;
var c3 = 544440.67046057;
var c4 = 148698928.24309;
f = {|f|
var r = squared(f);
var m1 = pow(r,4);
var n1 = squared(c1 + r);
var n2 = c2 + r;
var n3 = c3 + r;
var n4 = squared(c4 + r);
var level = k * m1 / (n1 * n2 * n3 * n4);
sqrt(level)
};
)
::
::
For a simpler but more flexible curve, see link::Classes/AmpComp::
]
@section{classmethods}
@section{method}
ar, kr, ir
@section{argument}
freq
Input frequency value. For freq == root, the output is rootAmp.
@section{argument}
root
Root freq relative to which the curve is calculated (usually lowest freq).
@section{argument}
minAmp
Amplitude at the minimum point of the curve (around 2512 Hz).
@section{argument}
rootAmp
Amplitude at the root frequency.
@section{discussion}
Apart from
@racketblock[freq::, the values are not modulatable
]
@section{Examples}
@racketblock[
// compare a sine without compensation
{ SinOsc.ar(MouseX.kr(300, 15000, 1)) * 0.1 }.play;
// with one that uses amplitude compensation
(
{
var freq;
freq = MouseX.kr(300, 15000, 1);
SinOsc.ar(freq) * 0.3 * AmpCompA.kr(freq)
}.play;
)
// adjust the minimum and root amp
// (in this way one can flatten out the curve for higher amplitudes)
(
{
var freq;
freq = MouseX.kr(300, 18000, 1);
Formant.ar(300, freq, 20, 0.1) * AmpCompA.kr(freq, 300, 0.6, 0.3)
}.play;
)
// the curve:
{ AmpCompA.ar(Line.ar(48, 120, 1).midicps, 48.midicps) }.plot(1.0);
// freqs:
{ AmpCompA.ar(Line.ar(0, 20000, 1)) }.plot(1.0);
// compare with AmpComp (exponential decay)
{ AmpComp.ar(Line.ar(48, 120, 1).midicps, 48.midicps) }.plot(1.0);
// freqs:
{ AmpComp.ar(Line.ar(40, 20000, 1), 40) }.plot(1.0);
// amplitude compensation in frequency modulation (using Fletscher-Munson curve)
(
{
var freq;
freq = MouseX.kr(300, 15000, 1);
freq = freq * SinOsc.ar(MouseY.kr(3, 200, 1), 0, 0.5, 1);
SinOsc.ar(freq) * 0.1 * AmpCompA.ar(freq, 300)
}.play;
)
// amplitude compensation in frequency modulation (using AmpComp exponential decay)
(
{
var freq;
freq = MouseX.kr(300, 15000, 1);
freq = freq * SinOsc.ar(MouseY.kr(3, 200, 1), 0, 0.5, 1);
SinOsc.ar(freq) * 0.1 * AmpComp.ar(freq, 300)
}.play;
)
// without amplitude compensation
(
{
var freq;
freq = MouseX.kr(300, 15000, 1);
freq = freq * SinOsc.ar(MouseY.kr(3, 200, 1), 0, 0.5, 1);
SinOsc.ar(freq) * 0.1
}.play;
)
[1] Function freq -> dB,
derived from http://www.beis.de/Elektronik/AudioMeasure/WeightingFilters.html
and modified to map freq -> amp
(
var k = 3.5041384e16;
var c1 = 424.31867740601;
var c2 = 11589.093052022;
var c3 = 544440.67046057;
var c4 = 148698928.24309;
f = {|f|
var r = squared(f);
var m1 = pow(r,4);
var n1 = squared(c1 + r);
var n2 = c2 + r;
var n3 = c3 + r;
var n4 = squared(c4 + r);
var level = k * m1 / (n1 * n2 * n3 * n4);
sqrt(level)
};
)
::
]