ported the rhs lib by Rohan Drape

This commit is contained in:
Mustafa 2014-02-14 19:12:23 -08:00
commit cead718a1a

738
rhs/rhs.rkt Normal file
View file

@ -0,0 +1,738 @@
#lang racket
#|
Port of the rhs library to Racket used by scos and rsc3.
Written by Rohan Drape (http://rd.slavepianos.org/), © 2008-2012
http://rd.slavepianos.org/
Licensed under GPL (2 or 3? FIXME)
|#
;; prelude.scm ;;;;;;;;;;;;;;;;;;;;;;
;; enumFromThenTo :: a -> a -> a -> [a]
(define enum-from-then-to
(letrec ((efdt
(lambda (f i x k)
(cond ((= i k) (list1 k))
((f i k) null)
(else (cons i (efdt f (+ i x) x k)))))))
(lambda (i j k)
(let ((x (- j i)))
(efdt (if (> x 0) > <) i x k)))))
;; enumFromTo :: a -> a -> [a]
(define enum-from-to
(lambda (i j)
(enum-from-then-to i (succ i) j)))
;; even :: (Integral a) => a -> Bool
(define even
even?)
;; odd :: (Integral a) => a -> Bool
(define odd
odd?)
;; pred :: a -> a
(define pred
(lambda (x)
(- x 1)))
;; signum :: Num a => a -> a
(define signum
(lambda (x)
(cond ((> x 0) 1)
((< x 0) -1)
(else 0))))
;; succ :: a -> a
(define succ
(lambda (x)
(+ x 1)))
;; undefined :: a
(define undefined
(lambda ()
(error "undefined" "undefined")))
;; tuple.scm ;;;;;;;;;;;;
;; curry :: ((a, b) -> c) -> a -> b -> c
(define curry
(lambda (f)
(lambda (x y)
(f (tuple2 x y)))))
(struct duple (p q))
;; fst :: (a, b) -> a
(define fst
duple-p)
;; snd :: (a, b) -> b
(define snd
duple-q)
;; (,) :: a -> b -> (a, b)
(define tuple2
duple)
;; uncurry :: (a -> b -> c) -> (a, b) -> c
(define uncurry
(lambda (f)
(lambda (xy)
(f (fst xy) (snd xy)))))
;; data/ord.scm ;;;;;;;;;;;;;;;;
;; data Ordering = LT | EQ | GT
;; compare :: (Ord a) => a -> a -> Ordering
(define compare
(lambda (x y)
(cond ((> x y) 'gt)
((< x y) 'lt)
(else 'eq))))
;; max :: a -> a -> a
(define max2
(lambda (x y)
(if (> x y) x y)))
;; min :: a -> a -> a
(define min2
(lambda (x y)
(if (< x y) x y)))
;; data/function.scm ;;;;;;;;;;;;;;;;;;
;; (.) :: (b -> c) -> (a -> b) -> a -> c
(define compose
(lambda (f g)
(lambda (x)
(f (g x)))))
;; const :: a -> b -> a
(define const
(lambda (x)
(lambda (_)
x)))
;; flip :: (a -> b -> c) -> b -> a -> c
(define flip
(lambda (f)
(lambda (x y)
(f y x))))
;; id :: a -> a
(define id
(lambda (x)
x))
;; data/list.scm ;;;;;;;;;;;;;;;;;;;;;;
;; all :: (a -> Bool) -> [a] -> Bool
(define all
(lambda (f l)
(if (null? l)
#t
(and (f (head l)) (all f (tail l))))))
;; and :: [Bool] -> Bool
(define all-true
(lambda (l)
(if (null? l)
#t
(and (head l) (all-true (tail l))))))
;; any :: (a -> Bool) -> [a] -> Bool
(define any
(lambda (f l)
(if (null? l)
#f
(or (f (head l)) (any f (tail l))))))
;; (++) :: [a] -> [a] -> [a]
(define append2
(lambda (a b)
(if (null? a)
b
(cons (head a) (append2 (tail a) b)))))
;; break :: (a -> Bool) -> [a] -> ([a],[a])
(define break
(lambda (p l)
(span (compose not p) l)))
;; concat :: [[a]] -> [a]
(define concat
(lambda (l)
(foldr append2 nil l)))
;; concatMap :: (a -> [b]) -> [a] -> [b]
(define concat-map
(lambda (f l)
(concat (map1 f l))))
;; deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
(define delete-by
(lambda (f x l)
(if (null? l)
nil
(if (f x (head l))
(tail l)
(cons (head l) (delete-by f x (tail l)))))))
;; delete :: (Eq a) => a -> [a] -> [a]
(define delete
(lambda (x l)
(delete-by equal? x l)))
;; drop :: Int -> [a] -> [a]
(define drop
(lambda (n l)
(cond ((<= n 0) l)
((null? l) nil)
(else (drop (- n 1) (tail l))))))
;; dropWhile :: (a -> Bool) -> [a] -> [a]
(define drop-while
(lambda (p l)
(if (null? l)
nil
(if (p (head l))
(drop-while p (tail l))
l))))
;; elem :: (Eq a) => a -> [a] -> Bool
(define elem
(lambda (x l)
(any (lambda (y) (equal? x y)) l)))
;; elemIndex :: Eq a => a -> [a] -> Maybe Int
(define elem-index
(lambda (x l)
(find-index (lambda (y) (equal? x y)) l)))
;; elemIndices :: Eq a => a -> [a] -> [Int]
(define elem-indices
(lambda (x l)
(find-indices (lambda (y) (equal? x y)) l)))
;; find :: (a -> Bool) -> [a] -> Maybe a
(define find
(lambda (f l)
(if (null? l)
#f
(if (f (head l))
(head l)
(find f (tail l))))))
;; findIndex :: (a -> Bool) -> [a] -> Maybe Int
(define find-index
(letrec ((g (lambda (f l n)
(if (null? l)
#f
(if (f (head l))
n
(g f (tail l) (+ n 1)))))))
(lambda (f l)
(g f l 0))))
;; findIndices :: (a -> Bool) -> [a] -> [Int]
(define find-indices
(letrec ((g (lambda (f l n)
(if (null? l)
nil
(if (f (head l))
(cons n (g f (tail l) (+ n 1)))
(g f (tail l) (+ n 1)))))))
(lambda (f l)
(g f l 0))))
;; filter :: (a -> Bool) -> [a] -> [a]
(define filter
(lambda (f l)
(if (null? l)
nil
(let ((x (head l))
(xs (tail l)))
(if (f x)
(cons x (filter f xs))
(filter f xs))))))
;; foldl :: (a -> b -> a) -> a -> [b] -> a
(define foldl
(lambda (f z l)
(if (null? l)
z
(foldl f (f z (head l)) (tail l)))))
;; foldl1 :: (a -> a -> a) -> [a] -> a
(define foldl1
(lambda (f l)
(foldl f (head l) (tail l))))
;; foldr :: (a -> b -> b) -> b -> [a] -> b
(define foldr
(lambda (f z l)
(if (null? l)
z
(f (head l) (foldr f z (tail l))))))
;; foldr1 :: (a -> a -> a) -> [a] -> a
(define foldr1
(lambda (f l)
(if (null? (tail l))
(head l)
(f (head l) (foldr1 f (tail l))))))
;; groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
(define group-by
(lambda (f l)
(if (null? l)
(list)
(let* ((x (car l))
(yz (span (lambda (e) (f e x)) (cdr l))))
(cons (cons x (fst yz)) (group-by f (snd yz)))))))
;; head :: [a] -> a
(define head car)
;; init :: [a] -> [a]
(define init
(lambda (l)
(let ((x (head l))
(xs (tail l)))
(if (null? xs)
nil
(cons x (init xs))))))
;; insert :: Ord a => a -> [a] -> [a]
(define insert
(lambda (e l)
(insert-by compare e l)))
;; insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
(define insert-by
(lambda (f x l)
(if (null? l)
(list1 x)
(if (equal? (f x (head l)) 'gt)
(cons (head l) (insert-by f x (tail l)))
(cons x l)))))
;; intercalate :: [a] -> [[a]] -> [a]
(define intercalate
(lambda (xs xss)
(concat (intersperse xs xss))))
;; intersperse :: a -> [a] -> [a]
(define intersperse
(lambda (x l)
(cond ((null? l) nil)
((null? (tail l)) l)
(else (cons (head l) (cons x (intersperse x (tail l))))))))
;; isInfixOf :: (Eq a) => [a] -> [a] -> Bool
(define is-infix-of
(lambda (p q)
(cond ((null? p) #t)
((null? q) #f)
(else (or (is-prefix-of p q)
(is-infix-of p (tail q)))))))
;; isPrefixOf :: (Eq a) => [a] -> [a] -> Bool
(define is-prefix-of
(lambda (p q)
(cond ((null? p) #t)
((null? q) #f)
(else (and (equal? (head p) (head q))
(is-prefix-of (tail p) (tail q)))))))
;; isSuffixOf :: (Eq a) => [a] -> [a] -> Bool
(define is-suffix-of
(lambda (p q)
(is-prefix-of (reverse p) (reverse q))))
;; last :: [a] -> a
(define last
(lambda (l)
(let ((xs (tail l)))
(if (null? xs)
(head l)
(last xs)))))
;; length :: [a] -> Int
(define length
(lambda (l)
(if (null? l)
0
(+ 1 (length (tail l))))))
;; list1 :: a -> [a]
(define list1
(lambda (x)
(cons x nil)))
;; list2 :: a -> a -> [a]
(define list2
(lambda (x y)
(cons x (cons y nil))))
;; list3 :: a -> a -> a -> [a]
(define list3
(lambda (x y z)
(cons x (cons y (cons z nil)))))
;; list4 :: a -> a -> a -> a -> [a]
(define list4
(lambda (x y z a)
(cons x (cons y (cons z (cons a nil))))))
;; list5 :: a -> a -> a -> a -> a -> [a]
(define list5
(lambda (x y z a b)
(cons x (cons y (cons z (cons a (cons b nil)))))))
;; (!!) :: [a] -> Int -> a
(define list-ref
(lambda (l n)
(if (= n 0)
(head l)
(list-ref (tail l) (- n 1)))))
;; lookup :: (Eq a) => a -> [(a, b)] -> Maybe b
(define lookup
(lambda (x l)
(if (null? l)
#f
(if (equal? (fst (head l)) x)
(snd (head l))
(lookup x (tail l))))))
;; map :: (a -> b) -> [a] -> [b]
(define map1
(lambda (f l)
(if (null? l)
nil
(cons (f (head l)) (map1 f (tail l))))))
;; mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
(define map-accum-l
(lambda (f s l)
(if (null? l)
(tuple2 s nil)
(let* ((x (head l))
(xs (tail l))
(s_y (f s x))
(s_ (fst s_y))
(y (snd s_y))
(s__ys (map-accum-l f s_ xs))
(s__ (fst s__ys))
(ys (snd s__ys)))
(tuple2 s__ (cons y ys))))))
;; mapAccumR :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
(define map-accum-r
(lambda (f s l)
(if (null? l)
(tuple2 s nil)
(let* ((x (head l))
(xs (tail l))
(s_ys (map-accum-r f s xs))
(s_ (fst s_ys))
(ys (snd s_ys))
(s__y (f s_ x))
(s__ (fst s__y))
(y (snd s__y)))
(tuple2 s__ (cons y ys))))))
;; maximum :: (Ord a) => [a] -> a
(define maximum
(lambda (l)
(foldl1 max2 l)))
;; minimum :: (Ord a) => [a] -> a
(define minimum
(lambda (l)
(foldl1 min2 l)))
;; nub :: (Eq a) => [a] -> [a]
(define nub
(lambda (l)
(nub-by equal? l)))
;; nubBy :: (a -> a -> Bool) -> [a] -> [a]
(define nub-by
(lambda (f l)
(if (null? l)
nil
(let ((x (head l))
(xs (tail l)))
(cons x (nub-by f (filter (lambda (y) (not (f x y))) xs)))))))
;; nil :: [a]
(define nil
(list))
;; notElem :: (Eq a) => a -> [a] -> Bool
(define not-elem
(lambda (x l)
(all (lambda (y) (not (equal? x y))) l)))
;; null :: [a] -> Bool
(define null?
(lambda (x)
(equal? x nil)))
;; or :: [Bool] -> Bool
(define any-true
(lambda (l)
(if (null? l)
#f
(or (head l) (any-true (tail l))))))
;; partition :: (a -> Bool) -> [a] -> ([a], [a])
(define partition*
(let ((select (lambda (p)
(lambda (x tf)
(let ((t (fst tf))
(f (snd tf)))
(if (p x)
(tuple2 (cons x t) f)
(tuple2 t (cons x f))))))))
(lambda (p xs)
(foldr (select p) (tuple2 nil nil) xs))))
;; product :: (Num a) => [a] -> a
(define product
(lambda (l)
(foldl * 1 l)))
;; replicate :: Int -> a -> [a]
(define replicate
(lambda (n x)
(if (= n 0)
nil
(cons x (replicate (- n 1) x)))))
;; reverse :: [a] -> [a]
(define reverse
(lambda (l)
(foldl (flip cons) nil l)))
;; scanl :: (a -> b -> a) -> a -> [b] -> [a]
(define scanl
(lambda (f q l)
(cons q (if (null? l)
nil
(scanl f (f q (head l)) (tail l))))))
;; scanl1 :: (a -> a -> a) -> [a] -> [a]
(define scanl1
(lambda (f l)
(if (null? l)
nil
(scanl f (head l) (tail l)))))
;; scanr :: (a -> b -> b) -> b -> [a] -> [b]
(define scanr
(lambda (f q0 l)
(if (null? l)
(list1 q0)
(let ((qs (scanr f q0 (tail l))))
(cons (f (head l) (head qs)) qs)))))
;; scanr1 :: (a -> a -> a) -> [a] -> [a]
(define scanr1
(lambda (f l)
(if (null? l)
nil
(if (null? (tail l))
l
(let ((qs (scanr1 f (tail l))))
(cons (f (head l) (head qs)) qs))))))
;; sort :: (Ord a) => [a] -> [a]
(define sort
(lambda (l)
(sort-by compare l)))
;; sortBy :: (a -> a -> Ordering) -> [a] -> [a]
(define sort-by
(lambda (f l)
(mergesort f l)))
;; mergesort :: (a -> a -> Ordering) -> [a] -> [a]
(define mergesort
(lambda (f l)
(mergesort* f (map1 list1 l))))
;; mergesort' :: (a -> a -> Ordering) -> [[a]] -> [a]
(define mergesort*
(lambda (f l)
(cond ((null? l) nil)
((null? (tail l)) (head l))
(else (mergesort* f (merge-pairs f l))))))
;; merge_pairs :: (a -> a -> Ordering) -> [[a]] -> [[a]]
(define merge-pairs
(lambda (f l)
(cond ((null? l) nil)
((null? (tail l)) l)
(else (cons (merge f (head l) (head (tail l)))
(merge-pairs f (tail (tail l))))))))
;; merge :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
(define merge
(lambda (f l r)
(cond ((null? l) r)
((null? r) l)
(else (if (equal? (f (head l) (head r)) 'gt)
(cons (head r) (merge f l (tail r)))
(cons (head l) (merge f (tail l) r)))))))
;; span :: (a -> Bool) -> [a] -> ([a],[a])
(define span
(lambda (p l)
(if (null? l)
(tuple2 nil nil)
(if (p (head l))
(let ((r (span p (tail l))))
(tuple2 (cons (head l) (fst r)) (snd r)))
(tuple2 nil l)))))
;; splitAt :: Int -> [a] -> ([a],[a])
(define split-at
(lambda (n l)
(tuple2 (take n l) (drop n l))))
;; sum :: (Num a) => [a] -> a
(define sum
(lambda (l)
(foldl + 0 l)))
;; tail :: [a] -> [a]
(define tail cdr)
;; take :: Int -> [a] -> [a]
(define take
(lambda (n l)
(cond ((<= n 0) nil)
((null? l) nil)
(else (cons (head l) (take (- n 1) (tail l)))))))
;; takeWhile :: (a -> Bool) -> [a] -> [a]
(define take-while
(lambda (p l)
(if (null? l)
nil
(if (p (head l))
(cons (head l) (take-while p (tail l)))
nil))))
;; transpose :: [[a]] -> [[a]]
(define transpose
(lambda (l)
(let ((protect
(lambda (f)
(lambda (x)
(if (null? x)
nil
(f x))))))
(cond ((null? l) nil)
((null? (head l)) (transpose (tail l)))
(else (let* ((e (head l))
(x (head e))
(xs (tail e))
(xss (tail l)))
(cons (cons x
(filter (compose not null?)
(map1 (protect head) xss)))
(transpose (cons xs
(map1 (protect tail) xss))))))))))
;; unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
(define unfoldr
(lambda (f x)
(let ((r (f x)))
(if r
(cons (fst r) (unfoldr f (snd r)))
nil))))
;; (unfoldr (lambda (b) (if (= b 0) #f (tuple2 b (- b 1)))) 10)
;; => (10 9 8 7 6 5 4 3 2 1)
;; union :: (Eq a) => [a] -> [a] -> [a]
(define union
(lambda (a b)
(union-by equal? a b)))
;; unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
(define union-by
(lambda (f xs ys)
(let ((g (lambda (x y) (delete-by f y x))))
(append2 xs (foldl g (nub-by f ys) xs)))))
;; zip :: [a] -> [b] -> [(a, b)]
(define zip
(lambda (a b)
(zip-with tuple2 a b)))
;; zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
(define zip-with
(lambda (f a b)
(cond ((null? a) nil)
((null? b) nil)
(else (cons (f (head a) (head b))
(zip-with f (tail a) (tail b)))))))
;; zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
(define zip-with3
(lambda (f a b c)
(cond ((null? a) nil)
((null? b) nil)
((null? c) nil)
(else (cons (f (head a) (head b) (head c))
(zip-with3 f (tail a) (tail b) (tail c)))))))
;; control/monad.scm ;;;;;;;;;;;;;;;;;;;;
;; replicateM :: (Monad m) => Int -> m a -> m [a]
(define-syntax replicate-m
(syntax-rules ()
((_ i x)
(replicate-m* i (lambda () x)))))
;; int -> (() -> a) -> [a]
(define replicate-m*
(lambda (i x)
(if (<= i 0)
nil
(cons (x) (replicate-m* (- i 1) x)))))