rsc3/doc-schelp/HelpSource/Classes/AbstractFunction.schelp

584 lines
13 KiB
Text
Raw Normal View History

2022-08-24 13:53:18 +00:00
class::AbstractFunction
summary::An object which responds to a set of messages that represent mathematical functions
categories::Core>Kernel
related::Classes/UGen,Classes/Pattern,Classes/Function,Overviews/Operators
description::
An AbstractFunction is an object which responds to a set of messages that represent
mathematical functions. Subclasses override a smaller set of messages to respond
to the mathematical functions.
The intent is to provide a mechanism for functions that do not calculate values directly but instead compose structures for calculating (lazy evaluation).
Function, Pattern, Stream and UGen are subclasses of AbstractFunction.
For example, if you multiply two UGens together the receiver responds by returning a new
instance of class BinaryOpUGen which has the two operands as inputs.
code::
{ var a, b; a = LFSaw.ar(220); b = LFPulse.ar(1442); [a, b, a * b] }.plot;
::
For an overview of common operators, see link::Overviews/Operators::, for specific examples, see also e.g. link::Classes/Function::, link::Classes/UGen::, link::Classes/Pattern::.
To see which classes implement a specific method, see that method in the generated link::Overviews/Methods:: overview.
instanceMethods::
subsection::Unary Messages
The following messages return an object which represents a delayed unary operation, i.e. an operation on one object. For example, the reciprocal of a function will result in a new function that, when called, returns the reciprocal of the evaluation of the operand.
All of the following messages send the message composeUnaryOp to the receiver with the
unary message selector as an argument.
See link::Classes/UnaryOpFunction::.
method::neg
code::
a = { 10.rand.postln }; b = a.neg; b.value;
// Patterns, Streams, UGens, and Proxies are AbstractFunctions, too:
a = Pgeom(1, 2, 5).neg; a.asStream.nextN(8);
{ a = LFNoise1.ar(1500); [a, a.neg] }.plot;
::
method::reciprocal
code::
a = { 10.rand.postln }; b = a.reciprocal; b.value;
a = Pgeom(1, 2, 5).reciprocal; a.asStream.nextN(8);
{ a = LFNoise1.ar(1500) + 2; [a, a.reciprocal] }.plot;
::
method::bitNot
Bitwise integer negation.
method::abs
Absolute value
code::
a = { 10.rand - 10.rand }; b = a.abs; b.value;
a = Pseries(3, -1.8, inf).abs; a.asStream.nextN(8);
{ a = LFNoise1.ar(1500); [a, a.abs] }.plot;
::
method::asFloat
code::
a = { "123.471".scramble }; b = a.asFloat; b.value;
::
method::asInt
code::
a = { "123471".scramble }; b = a.asInt; b.value;
::
method::ceil, floor, frac
code::
a = { 10.0.rand2.postln }; b = a.ceil; b.value;
a = { 10.0.rand2.postln }; b = a.floor; b.value;
a = Pgeom(1, 1.2, inf).ceil; a.asStream.nextN(8);
a = Pgeom(1, 1.2, inf).floor; a.asStream.nextN(8);
{ a = SinOsc.ar(150) * 1.5; [a, a.ceil, a.floor, a.frac] }.plot.superpose_(true);
::
method::sign
Returns a function that returns -1 if receiver returns a negative number, 1 if positive, and 0 if zero.
code::
a = { 10.0.rand2.postln }; b = a.sign; b.value;
{ a = LFNoise1.ar(1500) * 1.5; [a, a.sign] }.plot;
::
method::squared
code::
a = { |x| x + 1 }; b = a.squared; [a.value(1), b.value(1)];
a = Pseries(0, 1, inf).squared; a.asStream.nextN(8);
{ a = LFNoise1.ar(1500); [a, a.squared] }.plot;
::
method::cubed
code::
a = { |x| x + 1 }; b = a.cubed; [a.value(1), b.value(1)];
a = Pseries(0, 1, inf).cubed; a.asStream.nextN(8);
{ a = LFNoise1.ar(1500); [a, a.cubed] }.plot;
::
method::sqrt
code::
a = { |x| x + 1 }; b = a.sqrt; [a.value(1), b.value(1)];
a = Pseries(0, 1, inf).sqrt; a.asStream.nextN(8);
{ a = LFNoise1.ar(1500); [a, a.sqrt] }.plot;
::
method::exp
Returns e to the power of this.
code::
a = { |x| x + 1 }; b = a.exp; [a.value(1), b.value(1)];
a = Pseries(0, 0.25, inf).exp; a.asStream.nextN(8);
{ a = LFNoise1.ar(1500); [a, a.exp] }.plot;
::
method::midicps
Converts midinote into cycles per seconds (Hz).
code::
a = { |x, root = 60| x + root }; b = a.midicps; [a.value(9), b.value(9)];
a = Pseries(60, 1, inf).midicps; a.asStream.nextN(12);
{ a = LFNoise1.ar(1) * 5 + 60; Pulse.ar(a.round.midicps) * 0.1 }.play;
::
method::cpsmidi
Converts cycles per seconds (Hz) into midinote.
code::
a = { |x| #[440, 720, 801, 1020.2].at(x) }; b = a.cpsmidi; [a.value(3), b.value(3)];
a = Pseries(220, 220, inf).cpsmidi; a.asStream.nextN(12); // overtone series as midinotes
// follow but round to next midinote
{ a = Pitch.kr(SoundIn.ar).at(1); Pulse.ar(a.cpsmidi.round.midicps) * 0.1 }.play;
::
method::midiratio
method::ratiomidi
method::ampdb
method::dbamp
method::octcps
method::cpsoct
method::log
method::log2
method::log10
method::sin
method::cos
method::tan
method::asin
method::acos
method::atan
method::sinh
method::cosh
method::tanh
method::rand
method::rand2
method::linrand
method::bilinrand
method::sum3rand
method::distort
method::softclip
method::coin
method::even
method::odd
method::isPositive
method::isNegative
method::isStrictlyPositive
method::rho
method::theta
subsection::Binary Messages
The following messages return an object which represents a delayed binary operation, i.e. an operation between two objects. For example, adding two functions will result in a new function that, when called, adds the results of the evaluation of the two operands.
All of the following messages send the message composeBinaryOp to the receiver with the
binary message selector and the second operand as arguments.
See: link::Classes/BinaryOpFunction::.
Examples:
code::
(
// Add two functions:
var x = { |x| x + 1000 } + { |x| x * 100 };
// Evaluate the result, passing in one argument:
x.value(2); // posts 1202
)
// either operand can be another object:
(
// Add two functions:
var x = 1871 + { |x| x * 12 };
x.value(12);
)
::
code::
(
// Add two UGens
{
SinOsc.ar(440, 0, 0.2) + PinkNoise.ar(0.1);
}.play
)
::
// Add two Patterns
code::
(Pseq([1, 2, 3, 4]) + Prand([0, 0.1, -0.1], inf)).asStream.nextN(5);
::
// Add two NodeProxies
code::
Ndef(\x, { SinOsc.ar(440, 0, 0.2) });
Ndef(\y, { PinkNoise.ar(0.1) });
Ndef(\z, Ndef(\x) + Ndef(\y)).play;
::
method::+
code::
({ |x| x.squared } + 3).value(2);
::
method::-
code::
({ |x| x.squared } - 3).value(2);
::
method::*
code::
({ |x| x.squared } * { |x| x.squared }).value(2);
::
method::/
code::
({ |x| x.squared } / 4).value(2);
::
method::div
code::
({ |x| x.squared } div: 3).value(2);
::
method::%
code::
({ |x| x.squared } % 3).value(2);
::
method::**
code::
({ |x| x.squared } ** 3).value(2);
::
method::min
code::
({ |x| x.squared } min: 0).value(2);
::
method::max
code::
({ |x| x.squared } max: 0).value(2);
::
method::<
code::
({ |x| x.squared } < 3).value(2);
::
method::<=
code::
({ |x| x.squared } <= 3).value(2);
::
method::>
code::
({ |x| x.squared } > 3).value(2);
::
method::>=
code::
({ |x| x.squared } >= 3).value(2);
::
method::&
code::
a = { |min, max| ({ rrand(min, max) } ! 4).postln };
(a & a).value(0, 8);
::
method::|
code::
a = { |min, max| ({ rrand(min, max) } ! 4).postln };
(a | a).value(0, 8);
::
method::lcm
code::
a = { |min, max| rrand(min, max).postln };
(a lcm: a).value(0, 8);
::
method::gcd
code::
a = { |min, max| rrand(min, max).postln };
(a gcd: a).value(0, 8);
::
method::round
code::
a = { |max| max.rand.postln };
(a round: 0.5).value(1.0);
::
method::trunc
code::
a = { |max| max.rand.postln };
(a trunc: 2).value(10);
::
method::atan2
code::
a = { 1.0.rand2 };
a.atan2.dup(10);
::
method::hypot
code::
a = { 1.0.rand2 };
a.hypot.dup(10);
::
method::hypotApx
code::
a = { 1.0.rand2 };
a.hypotApx.dup(10);
::
method::>>
code::
a = { [2r10010, 2r101011, 2r11100].choose.postln };
b = a >> 2;
b.value.asBinaryDigits.join;
::
method::+>>
code::
a = { [2r10010, 2r101011, 2r11100].choose.postln };
b = a +>> 2;
b.value.asBinaryDigits.join;
::
method::ring1
(a * b) + a
code::
({ [5, 6, 2].choose.postln } ring1: { [2, -1, 3].choose.postln }).value
// UGens are also abstract functions
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
ring1(a, b) * 0.1 }.play;
)
::
method::ring2
((a*b) + a + b)
code::
({ [5, 6, 2].choose.postln } ring2: { [2, -1, 3].choose.postln }).value
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
ring2(a, b) * 0.1 }.play;
)
::
method::ring3
(a * a * b)
code::
({ [5, 6, 2].choose.postln } ring3: { [2, -1, 3].choose.postln }).value
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
ring3(a, b) * 0.1 }.play;
)
::
method::ring4
((a*a *b) - (a*b*b))
code::
({ [5, 6, 2].choose.postln } ring4: { [2, -1, 3].choose.postln }).value
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
ring4(a, b) * 0.1 }.play;
)
::
method::difsqr
(a*a) - (b*b)
code::
({ [5, 6, 2].choose.postln } difsqr: { [2, -1, 3].choose.postln }).value
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
difsqr(a, b) * 0.1 }.play;
)
::
method::sumsqr
(a*a) + (b*b)
code::
({ [5, 6, 2].choose.postln } sumsqr: { [2, -1, 3].choose.postln }).value
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
sumsqr(a, b) * 0.1 }.play;
)
::
method::sqrdif
(a - b) ** 2
code::
({ [5, 6, 2].choose.postln } sqrdif: { [2, -1, 3].choose.postln }).value
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
ring4(a, b) * 0.1 }.play;
)
::
method::sqrsum
(a + b) ** 2
code::
({ [5, 6, 2].choose.postln } sqrsum: { [2, -1, 3].choose.postln }).value
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
sqrsum(a, b) * 0.1 }.play;
)
::
method::absdif
(a - b).abs
code::
({ [5, 6, 2].choose.postln } absdif: { [2, -1, 3].choose.postln }).value
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
absdif(a, b) * 0.1 }.play;
)
::
method::moddif
absolute difference in modulo arithmetics.
method::amclip
0 when b <= 0, a*b when b > 0
method::scaleneg
a * b when a < 0, otherwise a.
method::clip2
clips receiver to +/- aNumber
method::excess
Returns the difference of the receiver and its clipped form.
method::<!
method::rrand
code::
a = { |x| sin(x) } rrand: { |x| sin(x) * -1 };
(0..1000).normalize(0, 5pi).collect(a).plot;
(
{ a = SinOsc.ar(335); b = SinOsc.ar(MouseX.kr(1, 1000, 1));
rrand(a, b) * 0.1 }.play;
)
::
method::exprand
method::rotate
method::dist
method::bitAnd
method::bitOr
method::bitXor
method::bitHammingDistance
method::@
subsection:: Messages with more arguments (n-ary Operators)
The following messages return an object which represents a delayed n-ary operation, i.e. an operation between several objects (often three). For example, rescaling a function with linlin will result in a new function that, when called, scales the results of the evaluation of all operands.
All of the following messages send the message code::composeNAryOp:: to the receiver with the
binary message selector and the other operands as arguments.
See link::Classes/NAryOpFunction::.
method::clip
method::wrap
method::fold
method::blend
method::linlin
method::linexp
method::explin
method::expexp
subsection:: other
method::applyTo
Interface that allows us to combine selectors (Symbols) and Functions. Sends valueArray(args) to this.
discussion::
code::
// example:
f = [{ |a, b| a * b * 100.rand }, { |a, b| sin(a) * sin(b) }, '*', '/'];
f.choose.postcs.applyTo(3, 4);
// this is used in SequenceableCollection reduce:
(1..10).reduce('+');
(1..10).reduce({ |a, b| a * b * 1.0.rand });
::
method::asUGenInput
returns:: the result of sending the value(for) message to this.
discussion::
code::
// example:
(
var f, g, product;
f = { SinOsc.ar(400) };
g = { LFPulse.kr(8) };
product = f * g * 0.1;
{ Pan2.ar(product, SinOsc.kr(0.3)) }.play;
)
::
method::sampled
Sample a function.
discussion::
code::
//sample a function
f = { |x| sin(3*x)*cos(8*x) }
f.plotGraph(from:0,to:2);
f.sampled(10,0,2).plotGraph(from:0,to:2);
f.sampled(80,0,2).plotGraph(from:0,to:2);
//on complicated functions a sampled function is less cpy heavy.
f = { |x| 60.collect{ 2**((x-rrand(0.0,1.0))) }.sum/60 };
f.plotGraph(from:0,to:1);
g = f.sampled(200);
g.plotGraph(from:0,to:1);
{ 200.collect{ f.(rand(0.0,1.0)) } }.bench;
{ 200.collect{ g.(rand(0.0,1.0)) } }.bench;
::
subsection::Function Composition
When unary, binary or n-ary operators are applied to an abstract function, it returns an object that represents
this operation, without evaluating the function: link::Classes/UnaryOpFunction::, link::Classes/BinaryOpFunction::, link::Classes/NAryOpFunction::.
Note that different subclasses like link::Classes/Pattern:: or link::Classes/UGen:: have their own composition scheme analogous to the one of AbstractFunction itself. For more about functions, see link::Classes/Function::.
code::
// compose a function that will return an array of random length
a = { |n| { 16.rand } ! n } <> { |x, y| rrand(4, 8) };
a.value;
// compose a function from a that selects only odd values
b = { |x| x.select(_.odd) } <> a;
b.value;
::
examples::
code::
// examples
a = { 1.0.rand } + 8;
a.value;
y = { 8 } + { 1.0.rand };
y.value;
::
code::
// arguments are passed into both functions
y = { |x=0| x } + { 1.0.rand };
y.value(10);
y = { |x=0| x * 3 } + { |x=0| x + 1.0.rand };
y.value(10);
y.postcs;
y = { |x=0| x * 3 } + { |x=0| x + 1.0.rand } * { |x=0| [50, 100].choose + x } + 1.0;
y.value(10);
::
code::
// environments can be used as a lookup with valueEnvir:
(
Environment.use {
~y = 10;
~x = 2;
~z = { |x=8| x } + { |y=0| y + 1.0.rand };
~z.valueEnvir;
}
)
::
code::
// n-ary operators:
a = blend({ 3.0.rand }, { 1000.rand }, { |frac| frac });
a.value(0.5);
a.value((0, 0.06..1)); // creates a range of values..
::