CLASS::Set summary::a set according to equality related::Classes/IdentitySet, Classes/List, Classes/Dictionary categories::Collections>Unordered DESCRIPTION:: A Set is s collection of objects, no two of which are equal. Most of its methods are inherited from Collection. The contents of a Set are unordered. You must not depend on the order of items in a set. For an ordered set, see link::Classes/OrderedIdentitySet::. INSTANCEMETHODS:: private::initSet, putCheck, fullCheck, grow, noCheckAdd subsection::Adding and Removing method::add Add anObject to the Set. An object which is equal to an object already in the Set will not be added. code:: Set[1, 2, 3].add(4).postln; Set[1, 2, 3].add(3).postln; Set["abc", "def", "ghi"].add("jkl").postln; Set["abc", "def", "ghi"].add("def").postln; :: method::remove Remove anObject from the Set. code:: Set[1, 2, 3].remove(3).postln; :: subsection::Iteration method::do Evaluates function for each item in the Set. The function is passed two arguments, the item and an integer index. code:: Set[1, 2, 3, 300].do({ arg item, i; item.postln }); :: method::keyAt Returns the object at the internal strong::index::. This index is not deterministic. subsection::Set specific operations method::sect, & Return the set theoretical intersection of this and strong::that::. code:: a = Set[1, 2, 3]; b = Set[2, 3, 4, 5]; sect(a, b); a & b // shorter syntax :: method::union, | Return the set theoretical union of this and strong::that::. code:: a = Set[1, 2, 3]; b = Set[2, 3, 4, 5]; union(a, b); a | b // shorter syntax :: method::difference, - Return the set of all items which are elements of this, but not of strong::that::. code:: a = Set[1, 2, 3]; b = Set[2, 3, 4, 5]; difference(a, b); a - b // shorter syntax :: method::symmetricDifference, -- Return the set of all items which are not elements of both this and strong::that::. code:: a = Set[1, 2, 3]; b = Set[2, 3, 4, 5]; symmetricDifference(a, b); a -- b // shorter syntax :: method::isSubsetOf Returns true if all elements of this are also elements of strong::that::. code:: a = Set[1, 2, 3, 4]; Set[1, 2].isSubsetOf(a); // true Set[1, 5].isSubsetOf(a); // false :: EXAMPLES:: code:: a = Set[1, 2, 3, 4]; b = a.powerset; // set of all parts a.isSubsetOf(b); // false: no set is ever part of itself. b.asArray.reduce(\union) == a; // true parts may not contain other elements that original b.asArray.reduce(\difference).isEmpty; // true. :: code:: // you can use Set to efficiently remove duplicates from an array: a = [1, 2, 3, 4, 3, 5, 5, 2, 2, 1]; a.as(Set); // convert to set a.as(Set).as(Array); // and convert back ::