class:: Pgauss summary:: random values that follow a Gaussian Distribution related:: Classes/Ppoisson categories:: Streams-Patterns-Events>Patterns>Random description:: This pattern uses the Box-Muller transform to generate a gaussian distribution from uniformly distributed values: code::sqrt(-2 * log(1.0.rand)) * sin(2pi.rand):: ClassMethods:: method::new argument::mean The mean of the distribution. argument::dev The spread of values around the mean (standard deviation). argument::length Number of values produced. Examples:: code:: ( var a; a = Pgauss(0.0, 100, inf); c = a.asStream.nextN(500); w = Window.new("Pgauss", Rect(10, 10, 540, 800)); // plot the values c.plot(bounds: Rect(10, 10, 520, 380), discrete: true, parent: w); // a histogram of the values c.histo(500).plot(bounds: Rect(10, 410, 520, 380), parent: w); ) ( var a, c, w; a = Pgauss(0.0, 10.0, inf); c = a.asStream.nextN(500); w = Window.new("Pgauss", Rect(10, 10, 540, 800)); // plot the values c.plot(bounds: Rect(10, 10, 520, 380), discrete: true, parent: w); // a histogram of the values c.histo(500).plot(bounds: Rect(10, 410, 520, 380), parent: w); ) // sound example ( SynthDef(\help_sinegrain, { arg out=0, freq=440, sustain=0.05; var env; env = EnvGen.kr(Env.perc(0.01, sustain, 0.2), doneAction: Done.freeSelf); Out.ar(out, SinOsc.ar(freq, 0, env)) }).add; ) ( var a; a = Pgauss(0.0, 1.0,inf).asStream; { loop { Synth(\help_sinegrain, [\freq, a.next * 600 + 300]); 0.02.wait; } }.fork; ) ::