class:: FBSineN summary:: Feedback sine with chaotic phase indexing categories:: UGens>Generators>Chaotic related:: Classes/FBSineL, Classes/FBSineC description:: A non-interpolating sound generator based on the difference equations: teletype:: x(n+1) = sin(im * y(n) + fb * x(n)) y(n+1) = (a * y(n) + c) % 2pi :: This uses a linear congruential function to drive the phase indexing of a sine wave. For code:: im = 1 ::, code:: fb = 0 ::, and code:: a = 1 :: a normal sinewave results. sclang code translation: code:: ( var im = 1, fb = 0.1, a = 1.1, c = 0.5, xi = 0.1, yi = 0.1, size = 64; plot(size.collect { xi = sin((im * yi) + (fb * xi)); yi = (a * yi + c) % 2pi; xi }); ) :: classmethods:: method:: ar argument:: freq Iteration frequency in Hertz argument:: im Index multiplier amount argument:: fb Feedback amount argument:: a Phase multiplier amount argument:: c Phase increment amount argument:: xi Initial value of x argument:: yi Initial value of y argument:: mul argument:: add examples:: code:: // default initial params { FBSineN.ar(SampleRate.ir/4) * 0.2 }.play(s); :: code:: // increase feedback { FBSineN.ar(SampleRate.ir, 1, Line.kr(0.01, 4, 10), 1, 0.1) * 0.2 }.play(s); :: code:: // increase phase multiplier { FBSineN.ar(SampleRate.ir, 1, 0, XLine.kr(1, 2, 10), 0.1) * 0.2 }.play(s); :: code:: // modulate frequency and index multiplier { FBSineN.ar(LFNoise2.kr(1, 1e4, 1e4), LFNoise2.kr(1,16,17), 1, 1.005, 0.7) * 0.2 }.play(s); :: code:: // randomly modulate params ( { FBSineN.ar( LFNoise2.kr(1, 1e4, 1e4), LFNoise2.kr(1, 32, 33), LFNoise2.kr(1, 0.5), LFNoise2.kr(1, 0.05, 1.05), LFNoise2.kr(1, 0.3, 0.3) ) * 0.2 }.play(s); ) ::