#lang scribble/manual @(require (for-label racket)) @title{SimpleNumber} one-dimensional value@section{categories} Math @section{related} Classes/Polar, Classes/Complex, Classes/Float, Classes/Integer, Classes/UnaryOpUGen, Classes/BinaryOpUGen @section{description} Base class for numbers which can be represented by a single one dimensional value. Most of the Unary and Binary operations are also implemented by link::Classes/UnaryOpUGen:: and link::Classes/BinaryOpUGen::, so you can get more examples by looking at the help for those. @section{CLASSMETHODS} @section{method} new allocates a new SimpleNumber. @section{INSTANCEMETHODS} @section{private} prSimpleNumberSeries @section{subsection} math support @section{method} + Addition @section{method} - Subtraction @section{method} * Multiplication @section{method} / Division @section{method} % Modulo @section{method} mod Modulo @section{method} div Integer Division @section{method} ** Exponentiation @section{method} != Is not @section{method} > greater than @section{method} < greater than @section{method} >= greater or equal than @section{method} <= smaller or equal than @section{method} lcm Least common multiple @section{method} gcd Greatest common divisor @section{method} round Round to multiple of aNumber @section{method} roundUp round up to a multiply of aNumber @section{method} thresh @section{method} min Minimum @section{method} max Maximum @section{method} wrap2 @section{method} trunc Truncate to multiple of aNumber @section{method} atan2 Arctangent of (this/aNumber) @section{method} hypot Square root of the sum of the squares. @section{method} log @section{returns} Base e logarithm. @section{method} log2 @section{returns} Base 2 logarithm. @section{method} log10 @section{returns} Base 10 logarithm. @section{method} neg @section{returns} negation @section{method} abs @section{returns} absolute value. @section{method} sign @section{returns} Answer -1 if negative, +1 if positive or 0 if zero. @section{method} ceil @section{returns} next larger integer. @section{method} floor @section{returns} next smaller integer @section{method} sin Sine @section{method} cos Cosine @section{method} tan Tangent @section{method} asin Arcsine @section{method} acos Arccosine @section{method} atan Arctangent @section{method} sinh Hyperbolic sine @section{method} cosh Hyperbolic cosine @section{method} tanh Hyperbolic tangent @section{method} frac fractional part @section{method} squared the square of the number @section{method} cubed the cube of the number @section{method} sqrt the square root of the number. @section{method} exp e to the power of the receiver. @section{method} reciprocal 1 / this @section{method} pow this to the power of aNumber @section{method} fold2 the folded value, a bitwise or with aNumber @section{method} previousPowerOf the number relative to this that is the previous power of aNumber @section{method} nextPowerOf the next power of aNumber @section{method} nextPowerOfTwo @section{returns} the number relative to this that is the next power of 2 @section{method} nextPowerOfThree the next power of three @section{method} hash @section{returns} a hash value @section{method} > Binary shift right. @section{method} +>> Unsigned binary shift right. @section{method} rightShift @section{returns} performs a binary right shift @section{method} unsignedRightShift @section{returns} performs an unsigned right shift @section{method} leftShift @section{returns} performs a binary left shift @section{method} bitOr @section{returns} performs a bitwise or with aNumber @section{method} bitAnd @section{returns} performs a bitwise and with aNumber @section{method} ring1 (a * b) + a @section{method} ring2 ((a*b) + a + b) @section{method} ring3 (a * a *b) @section{method} ring4 ((a*a *b) - (a*b*b)) @section{method} difsqr (a*a) - (b*b) @section{method} sumsqr (a*a) + (b*b) @section{method} sqrdif (a - b) ** 2 @section{method} sqrsum (a + b) ** 2 @section{method} absdif (a - b).abs @section{method} moddif On a circle, there are two distances between two points. This operator returns the smaller value of the two. @racketblock[ moddif(0.75, 0, 1) :: ] @section{method} amclip 0 when b <= 0, a*b when b > 0 @section{method} scaleneg a * b when a < 0, otherwise a. @section{method} clip2 clips receiver to +/- aNumber @section{method} excess Returns the difference of the receiver and its clipped form. @section{discussion} @racketblock[ (a - clip2(a,b)) :: ] @section{method} madd @racketblock[ this * a + b :: ] @section{subsection} testing @section{method} isPositive Answer if the number is >= 0. @section{method} isNegative Answer if the number is < 0. @section{method} isStrictlyPositive Answer if the number is > 0. @section{method} booleanValue @section{returns} true, if strictly positive ( > 0), otherwise false (see link::Classes/Boolean::) @section{method} isNaN @section{method} == @section{subsection} conversion @section{method} asFraction @section{argument} denominator @section{argument} fasterBetter if true, asFraction may find a much closer approximation and do it faster. @section{returns} an array of denominator and divisor of the nearest and smallest fraction @section{method} asAudioRateInput Converts this into an audiorate input. @section{method} asTimeString Compile a time string. @section{argument} precision how accurate @section{argument} maxDays the maximum number of days @section{argument} dropDaysIfPossible a link::Classes/Boolean:: @section{returns} a string corresponding to the hours:minutes:seconds based on the receiver as number of seconds @section{discussion} @racketblock[ ( var start; start = Main.elapsedTime; { loop({(Main.elapsedTime - start).asTimeString.postln; 0.05.wait}) }.fork; ) :: ] @section{method} asPoint @section{returns} this as link::Classes/Point::. x = y = this. @section{method} asComplex @section{returns} this as link::Classes/Point::. x = y = this. @section{method} asWarp @section{argument} spec a link::Classes/ControlSpec:: @section{returns} this as link::Classes/CurveWarp:: according to spec. @section{method} asFloat @section{returns} this as link::Classes/Float:: @section{method} asRect @section{returns} a link::Classes/Rect:: with x = y = w = h = this. @section{method} asBoolean @section{returns} this as a link::Classes/Boolean::. this > 0 @section{method} asQuant @section{returns} the values as link::Classes/Quant:: @section{method} asInteger @section{returns} this as link::Classes/Integer:: @section{subsection} timing @section{method} wait within a routine, yield the number so that the clock can wait for this many beats. Outside a Routine, this trows an error (see also Routine for details). @section{discussion} Create a routine by a function fork @racketblock[ ( fork { 1.wait; "I did wait".postln; 1.0.rand.wait; "No you didn't".postln; 2.wait; (1..).do { |i| "yes I did".postln; i.asFloat.rand.wait; "no you didn't".postln; i.wait } } ) :: ] @section{method} waitUntil like wait, only specify a time (measured in beats of the current thread's clock). Outside a Routine, this trows an error (see also Routine for details). @section{method} sleep make the current thread sleep, until woken up by re-scheduling. Outside a Routine, this trows an error (see also Routine for details). @section{method} nextTimeOnGrid @section{argument} clock @section{returns} the next possible multiple of the clock's beats. @section{method} schedBundleArrayOnClock @section{subsection} series and arrays @section{method} nearestInList @section{returns} the value in the list closest to this @section{discussion} @racketblock[ ( l = [0, 0.5, 0.9, 1]; (0, 0.05..1).collect { |i| i.nearestInList(l) } ) :: ] @section{method} nearestInScale @section{argument} scale an array of SimpleNumbers each treated as a step in the octave. @section{argument} stepsPerOctave 12 by default @section{returns} the value in the collection closest to this, assuming an octave repeating table of note values. @section{discussion} @racketblock[ ( l = [0, 1, 5, 9, 11]; // pentatonic scale (60, 61..76).collect { |i| i.nearestInScale(l, 12) } ) :: ] @section{method} series return an arithmetic series from this over second to last. @section{discussion} This is used in the shortcuts: @racketblock[ (0..100); (1, 3 .. 17) :: If second is nil, it is one magnitude step towards last (1 or -1). Examples: ] @racketblock[ series(5, 7, 10); series(5, nil, 10); (5, 7 .. 10) :: ] @section{method} seriesIter @section{returns} a Routine that iterates over the numbers from this to last. @section{discussion} Since this is a lazy operation, last may be inf, generating an endless series (see also link::Guides/ListComprehensions::) @racketblock[ r = seriesIter(0, 5); r.nextN(8); r.nextN(8); :: ] @section{subsection} windowing @section{method} rectWindow @section{returns} a value for a rectangular window function between 0 and 1. @section{method} hanWindow @section{returns} a value for a hanning window function between 0 and 1. @section{method} welWindow @section{returns} a value for a welsh window function between 0 and 1. @section{method} triWindow @section{returns} a value for a triangle window function between 0 and 1. @section{subsection} mapping @section{method} distort a nonlinear distortion function. @section{method} softclip Distortion with a perfectly linear region from -0.5 to +0.5 @section{method} scurve Map receiver in the onto an S-curve. @section{discussion} @racketblock[ ((0..100) / 100 ).collect(_.scurve).plot :: ] @section{method} ramp Map receiver onto a ramp starting at 0. @section{discussion} @racketblock[ ((-100..100) / 100 ).collect(_.ramp).plot :: ] @section{method} magnitude @section{returns} absolute value (see link::Classes/Polar::, link::Classes/Complex::) @section{method} angle @section{returns} angle of receiver conceived as link::Classes/Polar:: or link::Classes/Complex:: number. @section{method} degreeToKey @section{argument} scale an array of SimpleNumbers each treated as a step in the octave. @section{argument} stepsPerOctave 12 is the standard chromatic scale. @section{discussion} the value is truncated to an integer and used as an index into an octave repeating table of note values. Indices wrap around the table and shift octaves as they do. @racketblock[ ( l = [0, 1, 5, 9, 11]; // pentatonic scale (1, 2..15).collect{|i| i.degreeToKey(l, 12) }; ) :: ] @section{method} keyToDegree inverse of degreeToKey. @section{argument} scale an array of SimpleNumbers each treated as a step in the octave. @section{argument} stepsPerOctave 12 is the standard chromatic scale. @section{discussion} @racketblock[ ( l = [0, 1, 5, 9, 11]; // pentatonic scale (60, 61..75).collect { |i| i.keyToDegree(l, 12) } ) :: ] @racketblock[ ( l = [0, 1, 5, 9, 11]; // pentatonic scale (60, 61..75).postln.collect { |i| i.keyToDegree(l, 12).degreeToKey(l) } ) :: ] @section{method} gaussCurve map the receiver onto a gauss function. @section{discussion} Uses the formula: @racketblock[ a * (exp(squared(this - b) / (-2.0 * squared(c)))) Default values: a = 1; b = 0; c = 1 :: Example code ] @racketblock[ (0..1000).normalize(-10, 10).collect { |num| num.gaussCurve }.plot; :: ] @section{method} equalWithPrecision @section{argument} that the number to compare with within precision @section{argument} precision The absolute precision, independent of the value compared @section{argument} relativePrecision The precision relative to the larger absolute of the values compared. @section{returns} true if receiver is closer to that than precision. @section{discussion} @racketblock[ 3.1.equalWithPrecision(3.0, 0.05); // false 3.1.equalWithPrecision(3.0, 0.1); // false 3.1.equalWithPrecision(3.0, 0.11); // true 3000.1.equalWithPrecision(3000.0, 0, 0.01); // true 3.1.equalWithPrecision(3.0, 0, 0.01); // false :: ] @section{method} quantize round the receiver to the quantum. @section{argument} quantum amount. @section{argument} tolerance allowed tolerance. @section{argument} strength Determines how much the value is allowed to differ in the tolerance range. @section{discussion} @racketblock[ ((0..10) / 10).collect { |num| num.quantize(1, 0.3, 0.5) }.postcs.plot; ((0..10) / 10).collect { |num| num.quantize(1, 0.6, 0.5) }.postcs.plot; ((0..10) / 10).collect { |num| num.quantize(1, 1.0, 0.5) }.postcs.plot; :: ] @section{method} linlin map the receiver from an assumed linear input range to a linear output range. If the input exceeds the assumed input range, the behaviour is specified by the clip argument. @section{argument} inMin assumed input minimum @section{argument} inMax assumed input maximum @section{argument} outMin output minimum @section{argument} outMax output maximum @section{argument} clip nil (don't clip) \max (clip ceiling) \min (clip floor) \minmax (clip both - this is default). @section{discussion} @racketblock[ (0..10).collect { |num| num.linlin(0, 10, -4.3, 100) }; (0..10).linlin(0, 10, -4.3, 100); // equivalent. :: ] @section{method} linexp map the receiver from an assumed linear input range (inMin..inMax) to an exponential output range (outMin..outMax). The output range must not include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument. @section{argument} inMin assumed input minimum @section{argument} inMax assumed input maximum @section{argument} outMin output minimum @section{argument} outMax output maximum @section{argument} clip nil (don't clip) \max (clip ceiling) \min (clip floor) \minmax (clip both - this is default). @section{discussion} @racketblock[ (0..10).collect { |num| num.linexp(0, 10, 4.3, 100) }; (0..10).linexp(0, 10, 4.3, 100); // equivalent. :: ] @section{method} explin map the receiver from an assumed exponential input range (inMin..inMax) to a linear output range (outMin..outMax). If the input exceeds the assumed input range. The input range must not include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument. @section{argument} inMin assumed input minimum @section{argument} inMax assumed input maximum @section{argument} outMin output minimum @section{argument} outMax output maximum @section{argument} clip nil (don't clip) \max (clip ceiling) \min (clip floor) \minmax (clip both - this is default). @section{discussion} @racketblock[ (1..10).collect { |num| num.explin(0.1, 10, -4.3, 100) }; (1..10).explin(0.1, 10, -4.3, 100); // equivalent. :: ] @section{method} expexp map the receiver from an assumed exponential input range (inMin..inMax) to an exponential output range (outMin..outMax). If the input exceeds the assumed input range. Both input range and output range must not include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument. @section{argument} inMin assumed input minimum @section{argument} inMax assumed input maximum @section{argument} outMin output minimum @section{argument} outMax output maximum @section{argument} clip nil (don't clip) \max (clip ceiling) \min (clip floor) \minmax (clip both - this is default). @section{discussion} @racketblock[ (1..10).collect { |num| num.expexp(0.1, 10, 4.3, 100) }; (1..10).expexp(0.1, 10, 4.3, 100); // equivalent. :: ] @section{method} lincurve map the receiver from an assumed linear input range (inMin..inMax) to an exponential curve output range (outMin..outMax). A curve is like the curve parameter in Env. Unlike with linexp, the output range may include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument. @section{argument} inMin assumed input minimum @section{argument} inMax assumed input maximum @section{argument} outMin output minimum @section{argument} outMax output maximum @section{argument} curve 0 (linear) <0 (concave, negatively curved) >0 (convex, positively curved) @section{argument} clip nil (don't clip) \max (clip ceiling) \min (clip floor) \minmax (clip both - this is default). @section{discussion} @racketblock[ (0..10).collect { |num| num.lincurve(0, 10, -4.3, 100, -3) }; (0..10).lincurve(0, 10, -4.3, 100, -3); // equivalent. :: ] @racketblock[ // different curves: (-4..4).do { |val| (0..100).collect(_.lincurve(0, 100, 0, 1, val)).plot } :: ] @section{method} curvelin map the receiver from an assumed curve-exponential input range (inMin..inMax) to a linear output range (outMin..outMax). If the input exceeds the assumed input range. A curve is like the curve parameter in Env. Unlike with explin, the input range may include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument. @section{argument} inMin assumed input minimum @section{argument} inMax assumed input maximum @section{argument} outMin output minimum @section{argument} outMax output maximum @section{argument} curve 0 (linear) <0 (concave, negatively curved) >0 (convex, positively curved) @section{argument} clip nil (don't clip) \max (clip ceiling) \min (clip floor) \minmax (clip both - this is default). @section{discussion} @racketblock[ (1..10).collect { |num| num.curvelin(0, 10, -4.3, 100, -3) }; (1..10).curvelin(0, 10, -4.3, 100, -3); // equivalent. :: ] @racketblock[ // different curves: (-4..4).do { |val| (0..100).collect(_.curvelin(0, 100, 0, 1, val)).plot } :: ] @section{method} bilin map the receiver from two assumed linear input ranges (inMin..inCenter) and (inCenter..inMax) to two linear output ranges (outMin..outCenter) and (outCenter..outMax). If the input exceeds the input range, the following behaviours are specified by the clip argument. @section{argument} inCenter @section{argument} inMin assumed input minimum @section{argument} inMax assumed input maximum @section{argument} outCenter @section{argument} outMin output minimum @section{argument} outMax output maximum @section{argument} clip nil (don't clip) \max (clip ceiling) \min (clip floor) \minmax (clip both - this is default). @section{discussion} @racketblock[ var center = 0.5, ctlCenter; w = Window("bilin", Rect(100, 100, 200, 100)).front; a = Slider(w, Rect(20, 20, 150, 20)).value_(0.5); b = Slider(w, Rect(20, 45, 150, 20)).value_(0.5); b.action = { center = b.value }; a.mouseDownAction = { ctlCenter = a.value }; a.action = { b.value = a.value.bilin(ctlCenter, 0, 1, center, 0, 1); }; :: ] @section{method} biexp map the receiver from two assumed exponential input ranges (inMin..inCenter) and (inCenter..inMax) to two linear output ranges (outMin..outCenter) and (outCenter..outMax). The input range must not include zero. If the input exceeds the input range, the following behaviours are specified by the clip argument. @section{argument} inCenter @section{argument} inMin assumed input minimum @section{argument} inMax assumed input maximum @section{argument} outCenter @section{argument} outMin output minimum @section{argument} outMax output maximum @section{argument} clip nil (don't clip) \max (clip ceiling) \min (clip floor) \minmax (clip both - this is default). @section{discussion} @racketblock[ // doesn't properly work yet. ( var center = 0.5, ctlCenter; w = Window("biexp", Rect(100, 100, 200, 100)).front; a = Slider(w, Rect(20, 20, 150, 20)).value_(0.5); b = Slider(w, Rect(20, 45, 150, 20)).value_(0.5); b.action = { center = b.value }; a.mouseDownAction = { ctlCenter = a.value + 0.05 }; a.action = { b.value = (a.value + 0.1).biexp(ctlCenter, 0.1, 1.1, center, 0, 1); }; ) :: ] @section{method} lcurve map the receiver onto an L-curve. @section{discussion} Uses the formula @racketblock[ a * (m * exp(x) * rTau + 1) / (n * exp(x) * rTau + 1) :: This is used for smoothing values and limiting them to a range. ] @racketblock[ (0..1000).normalize(-10, 10).collect { |num| num.lcurve }.plot; :: ] @section{method} degrad @section{returns} converts degree to radian @section{method} raddeg @section{returns} converts radian to degree @section{method} midicps Convert MIDI note to cycles per second @section{returns} cycles per second @section{method} cpsmidi Convert cycles per second to MIDI note. @section{returns} midi note @section{method} midiratio Convert an interval in semitones to a ratio. @section{returns} a ratio @section{method} ratiomidi Convert a ratio to an interval in semitones. @section{returns} an interval in semitones @section{method} ampdb Convert a linear amplitude to decibels. @section{method} dbamp Convert a decibels to a linear amplitude. @section{method} octcps Convert decimal octaves to cycles per second. @section{method} cpsoct Convert cycles per second to decimal octaves. @section{subsection} streams @section{method} storeOn stores this on the given stream @section{method} printOn prints this on the given stream @section{subsection} random @section{method} coin Answers a Boolean which is the result of a random test whose probability of success in a range from zero to one is this. @section{method} rand @section{returns} Random number from zero up to the receiver, exclusive. @section{method} rand2 @section{returns} a random number from -this to +this. @section{method} rrand @section{argument} aNumber the upper limit @section{argument} adverb @section{returns} a random number in the interval ]a, b[. @section{discussion} If both a and b are link::Classes/Integer:: then the result will be an link::Classes/Integer::. @section{method} linrand @section{returns} a linearly distributed random number from zero to this. @section{method} bilinrand @section{returns} Bilateral linearly distributed random number from -this to +this. @section{method} sum3rand This was suggested by Larry Polansky as a poor man's gaussian. @section{returns} A random number from -this to +this that is the result of summing three uniform random generators to yield a bell-like distribution. @section{method} exprand an exponentially distributed random number in the interval ]a, b[. This is always a link::Classes/Float::. (Note that the distribution of numbers is not exactly an EMPHASIS::exponential distribution::, since that would be unbounded: we might call it a EMPHASIS::logarithmic uniform distribution::.) @section{argument} aNumber the upper limit @section{argument} adverb @section{method} gauss a gaussian distributed random number. @section{argument} standardDeviation the upper limit @section{discussion} Always returns a link::Classes/Float::. @racketblock[ (0..1000).collect { |num| gauss(0.0, num) }.plot; :: ] @section{method} partition randomly partition a number into parts of at least min size. @section{argument} parts number of parts @section{argument} min the minimum size @section{discussion} @racketblock[ 75.partition(8, 3); 75.partition(75, 1); :: ] @section{subsection} UGen Compatibility Methods Some methods to ease the development of generic ugen code. @section{method} lag, lag2, lag3, lagud, lag2ud, lag3ud, slew, varlag @section{returns} @racketblock[this:: ] @section{subsection} misc @section{method} isValidUGenInput @section{returns} false if receiver cannot be used in UGen.