class:: LorenzL summary:: Lorenz chaotic generator categories:: UGens>Generators>Chaotic description:: A strange attractor discovered by Edward N. Lorenz while studying mathematical models of the atmosphere. The system is composed of three ordinary differential equations: teletype:: x' = s * (y - x) y' = x * (r - z) - y z' = x * y - b * z :: The time step amount code::h:: determines the rate at which the ODE is evaluated. Higher values will increase the rate, but cause more instability. A safe choice is the default amount of 0.05. classmethods:: method:: ar argument:: freq Iteration frequency in Hertz argument:: s Equation variable argument:: r Equation variable argument:: b Equation variable argument:: h Integration time step argument:: xi Initial value of x argument:: yi Initial value of y argument:: zi Initial value of z argument:: mul argument:: add examples:: code:: // vary frequency { LorenzL.ar(MouseX.kr(20, SampleRate.ir)) * 0.3 }.play(s); :: code:: // randomly modulate params ( { LorenzL.ar( SampleRate.ir, LFNoise0.kr(1, 2, 10), LFNoise0.kr(1, 20, 38), LFNoise0.kr(1, 1.5, 2) ) * 0.2 }.play(s); ) :: code:: // as a frequency control { SinOsc.ar(Lag.ar(LorenzL.ar(MouseX.kr(1, 200)),3e-3)*800+900)*0.4 }.play(s); ::