A linear-interpolating sound generator based on a function given in Clifford Pickover's book Chaos In Wonderland, pg 26. The function is:
x(n+1) = sin(b * y(n)) + c * sin(b * x(n)) y(n+1) = sin(a * x(n)) + d * sin(a * y(n))
According to Pickover, parameters a
and b
should be in the range from -3 to +3, and parameters c
and d
should be in the range from 0.5 to 1.5. The function can, depending on the parameters given, give continuous chaotic output, converge to a single value (silence) or oscillate in a cycle (tone).
sclang code translation:
( var a = 1, b = 3, c = 0.5, d = 0.5, xi = 0.5, yi = 0.5, size = 64; plot(size.collect { var x = xi; xi = sin(b * yi) + (c * sin(b * xi)); yi = sin(a * x) + (d * sin(a * yi)); xi }); )
freq |
Iteration frequency in Hertz |
a |
Equation variable |
b |
Equation variable |
c |
Equation variable |
d |
Equation variable |
xi |
Initial value of x |
yi |
Initial value of y |
// default initial params { LatoocarfianL.ar(MouseX.kr(20, SampleRate.ir)) * 0.2 }.play(s);
// randomly modulate all params ( { LatoocarfianL.ar( SampleRate.ir/4, LFNoise2.kr(2,1.5,1.5), LFNoise2.kr(2,1.5,1.5), LFNoise2.kr(2,0.5,1.5), LFNoise2.kr(2,0.5,1.5) ) * 0.2 }.play(s); )
( { LatoocarfianL.ar( SampleRate.ir/4, [LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3, LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2), [LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3, LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2), [LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3, LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2), [LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3, LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2) ) * 0.2 !2}.play; )