A non-interpolating sound generator based on the difference equations:
x(n+1) = sin(im * y(n) + fb * x(n)) y(n+1) = (a * y(n) + c) % 2pi
This uses a linear congruential function to drive the phase indexing of a sine wave. For im = 1
, fb = 0
, and a = 1
a normal sinewave results.
sclang code translation:
( var im = 1, fb = 0.1, a = 1.1, c = 0.5, xi = 0.1, yi = 0.1, size = 64; plot(size.collect { xi = sin((im * yi) + (fb * xi)); yi = (a * yi + c) % 2pi; xi }); )
freq |
Iteration frequency in Hertz |
im |
Index multiplier amount |
fb |
Feedback amount |
a |
Phase multiplier amount |
c |
Phase increment amount |
xi |
Initial value of x |
yi |
Initial value of y |
mul | |
add |
// default initial params { FBSineN.ar(SampleRate.ir/4) * 0.2 }.play(s);
// increase feedback { FBSineN.ar(SampleRate.ir, 1, Line.kr(0.01, 4, 10), 1, 0.1) * 0.2 }.play(s);
// increase phase multiplier { FBSineN.ar(SampleRate.ir, 1, 0, XLine.kr(1, 2, 10), 0.1) * 0.2 }.play(s);
// modulate frequency and index multiplier { FBSineN.ar(LFNoise2.kr(1, 1e4, 1e4), LFNoise2.kr(1,16,17), 1, 1.005, 0.7) * 0.2 }.play(s);
// randomly modulate params ( { FBSineN.ar( LFNoise2.kr(1, 1e4, 1e4), LFNoise2.kr(1, 32, 33), LFNoise2.kr(1, 0.5), LFNoise2.kr(1, 0.05, 1.05), LFNoise2.kr(1, 0.3, 0.3) ) * 0.2 }.play(s); )