#lang scribble/manual @(require (for-label racket)) @title{LFGauss} Gaussian function oscillator@section{categories} UGens>Generators>Deterministic @section{description} A non-band-limited gaussian function oscillator. Output ranges from strong::minval:: to 1. LFGauss implements the formula: @racketblock[ f(x) = exp(squared(x - iphase) / (-2.0 * squared(width))) :: where x is to vary in the range -1 to 1 over the period dur. strong::minval:: is the initial value at -1. ] @section{classmethods} @section{method} ar, kr @section{argument} duration duration of one full cycle ( for strong::freq:: input: strong::dur = 1 / freq:: ) @section{argument} width relative width of the bell. Best to keep below 0.25 when used as envelope. (default: 0.1) @section{argument} iphase initial offset (default: 0) @section{argument} loop if loop is > 0, UGen oscillates. Otherwise it calls doneAction after one cycle (default: 1) @section{argument} doneAction doneAction, which is evaluated after cycle completes (2 frees the synth, default: 0). See link::Classes/Done:: for more detail. @section{instancemethods} @section{method} minval Returns the lowest value for the given parameters, which is @racketblock[exp(1.0 / (-2.0 * squared(width))):: ] @section{method} range Scales the output to the given range. This can be convenient when using LFGauss as an envelope (see example below). @racketblock[ { LFGauss.ar(0.01, 0.6).range }.plot; { LFGauss.ar(0.01, 0.6) }.plot; // starts at about 0.25 :: ] @section{examples} @section{subsection} Some plots @racketblock[ s.boot ; // a 0.1 second grain { LFGauss.ar(0.1, 0.12) }.plot(0.1); // shifting left { LFGauss.ar(0.1, 0.12, -1, loop: 0) }.plot(0.1); // moving further away from the center { LFGauss.ar(0.1, 0.12, 2) }.plot(0.2); // several grains { LFGauss.ar(0.065, 0.12, 0, loop: 1) }.plot(0.3); :: ] @section{subsection} Some calculations assuming iphase = 0: strong::minval:: for a given width: @racketblock[minval = exp(-1.0 / (2.0 * squared(width))):: strong::width:: for a given minval: ] @racketblock[width = sqrt(-1.0 / log(minval)):: strong::width at half maximum (0.5)::: ] @racketblock[(2 * sqrt(2 * log(2)) * width) = ca. 2.355 * width:: ] @racketblock[ // minval for a width of 0.1: (exp(1 / (-2.0 * squared(0.1)))) // 2e-22 // maximum width for a beginning at -60dB: // we want the beginning small enough to avoid clicks sqrt(-1 / ( 2 * log(-60.dbamp))) // 0.269 // minval for width of 0.25 (exp(1 / (-2.0 * squared(0.25)))).ampdb // -70dB // maximum is always 1: { LFGauss.ar(0.1, XLine.kr(1, 0.03, 1), 0, loop: 1) }.plot(1); // a gauss curve in sclang: (0..1000).normalize(-1, 1).collect(_.gaussCurve(1, 0, 0.1)).plot; // rescale the function to the range 0..1 ( { var width = XLine.kr(0.04, 1.0, 1); var min = (exp(1.0 / (-2.0 * squared(width)))); var gauss = LFGauss.ar(0.1, width, loop: 1); gauss.linlin(min, 1, 0, 1); }.plot(1) ); // range does the same implicitly ( { var width = XLine.kr(0.04, 1.0, 1); LFGauss.ar(0.1, width, loop: 1).range(0, 1); }.plot(1) ); :: ] @section{subsection} Sound examples @racketblock[ // modulating duration { LFGauss.ar(XLine.kr(0.1, 0.001, 10), 0.03) * 0.2 }.play; // modulating width, freq 60 Hz { LFGauss.ar(1/60, XLine.kr(0.1, 0.001, 10)) * 0.2 }.play; // modulating both: x position is frequency, y is width factor. // note the artefacts due to aliasing at high frequencies { LFGauss.ar(MouseX.kr(1/8000, 0.1, 1), MouseY.kr(0.001, 0.1, 1)) * 0.1 }.play; // LFGauss as amplitude modulator { LFGauss.ar(MouseX.kr(1, 0.001, 1), 0.1) * SinOsc.ar(1000) * 0.1 }.play; // modulate iphase { LFGauss.ar(0.001, 0.2, [0, MouseX.kr(-1, 1)]).sum * 0.2 }.scope; // for very small width we are "approaching" a dirac function { LFGauss.ar(0.01, SampleDur.ir * MouseX.kr(10, 3000, 1)) * 0.2 }.play; // dur and width can be modulated at audio rate ( { var dur = SinOsc.ar(MouseX.kr(2, 1000, 1) * [1, 1.1]).range(0.0006, 0.01); var width = SinOsc.ar(0.5 * [1, 1.1]).range(0.01, 0.3); LFGauss.ar(dur, width) * 0.2 }.play ); // several frequencies and widths combined ( { var mod = LFGauss.ar(MouseX.kr(1, 0.07, 1), 1 * (MouseY.kr(1, 3) ** (-1..-6))); var carr = SinOsc.ar(200 * (1.3 ** (0..5))); (carr * mod).sum * 0.1 }.play; ) // test spectrum ( { var son = LeakDC.ar(LFGauss.ar(0.005, 0.2)); BPF.ar(son * 3, MouseX.kr(60, 2000, 1), 0.05) }.play; ) :: ] @section{subsection} Gabor Grain @section{note} The gaussian function doesn't start with 0 – it asymptotically approaches it at @racketblock[-inf:: and ] @racketblock[inf::. When using it as an envelope, it has to start at some smaller value, and it has an offset for this value. You can remove this offset by explicitly setting the strong::range::, e.g. to ] @racketblock[0..1:: (this is the default). :: ] @racketblock[ ( var freq = 1000; var ncycles = 10; var width = 0.25; var dur = ncycles / freq; { var env = LFGauss.ar(dur, width, loop: 0, doneAction: Done.freeSelf).range; var son = FSinOsc.ar(freq, 0.5pi, env); son }.plot(dur); ) ( SynthDef(\gabor, { |out, i_freq = 440, i_sustain = 1, i_pan = 1, i_amp = 0.1, i_width = 0.25 | var env = LFGauss.ar(i_sustain, i_width, loop: 0, doneAction: Done.freeSelf).range; var son = FSinOsc.ar(i_freq, 0.5pi, env); OffsetOut.ar(out, Pan2.ar(son, i_pan, i_amp)); }).add; ) // modulating various parameters ( Pdef(\x, Pbind( \instrument, \gabor, \freq, Pbrown(step:0.01).linexp(0, 1, 100, 14000), \dur, Pbrown().linexp(0, 1, 0.004, 0.02), \legato, Pbrown(1, 3, 0.1, inf), \pan, Pwhite() * Pbrown() ) ).play ) // modulating width only ( Pdef(\x, Pbind( \instrument, \gabor, \freq, 1000, \dur, 0.01, \width, Pseg(Pseq([0.25, 0.002], inf), 10, \exp), \legato, 2 ) ).play ) // compare with sine grain. ( SynthDef(\gabor, { |out, i_freq = 440, i_sustain = 1, i_pan = 1, i_amp = 0.1, i_width=0.25 | var env = EnvGen.ar(Env.sine(i_sustain * i_width), doneAction: Done.freeSelf); var son = FSinOsc.ar(i_freq, 0.5pi, env); OffsetOut.ar(out, Pan2.ar(son, i_pan, i_amp)); }).add; ) :: ]