82 lines
2.2 KiB
Text
82 lines
2.2 KiB
Text
|
class:: LatoocarfianL
|
||
|
summary:: Latoocarfian chaotic generator
|
||
|
categories:: UGens>Generators>Chaotic
|
||
|
related:: Classes/LatoocarfianC, Classes/LatoocarfianN
|
||
|
|
||
|
description::
|
||
|
A linear-interpolating sound generator based on a function given in Clifford Pickover's book Chaos In Wonderland, pg 26. The function is:
|
||
|
|
||
|
teletype::
|
||
|
x(n+1) = sin(b * y(n)) + c * sin(b * x(n))
|
||
|
y(n+1) = sin(a * x(n)) + d * sin(a * y(n))
|
||
|
::
|
||
|
|
||
|
According to Pickover, parameters code::a:: and code::b:: should be in the range from -3 to +3, and parameters code::c:: and code::d:: should be in the range from 0.5 to 1.5. The function can, depending on the parameters given, give continuous chaotic output, converge to a single value (silence) or oscillate in a cycle (tone).
|
||
|
|
||
|
sclang code translation:
|
||
|
|
||
|
code::
|
||
|
(
|
||
|
var a = 1, b = 3, c = 0.5, d = 0.5, xi = 0.5, yi = 0.5, size = 64;
|
||
|
plot(size.collect { var x = xi;
|
||
|
xi = sin(b * yi) + (c * sin(b * xi));
|
||
|
yi = sin(a * x) + (d * sin(a * yi));
|
||
|
xi
|
||
|
});
|
||
|
)
|
||
|
::
|
||
|
|
||
|
note::This UGen is experimental and not optimized currently, so is rather hoggish of CPU.::
|
||
|
|
||
|
classmethods::
|
||
|
method:: ar
|
||
|
argument:: freq
|
||
|
Iteration frequency in Hertz
|
||
|
argument:: a
|
||
|
Equation variable
|
||
|
argument:: b
|
||
|
Equation variable
|
||
|
argument:: c
|
||
|
Equation variable
|
||
|
argument:: d
|
||
|
Equation variable
|
||
|
argument:: xi
|
||
|
Initial value of x
|
||
|
argument:: yi
|
||
|
Initial value of y
|
||
|
|
||
|
examples::
|
||
|
code::
|
||
|
// default initial params
|
||
|
{ LatoocarfianL.ar(MouseX.kr(20, SampleRate.ir)) * 0.2 }.play(s);
|
||
|
::
|
||
|
|
||
|
code::
|
||
|
// randomly modulate all params
|
||
|
(
|
||
|
{ LatoocarfianL.ar(
|
||
|
SampleRate.ir/4,
|
||
|
LFNoise2.kr(2,1.5,1.5),
|
||
|
LFNoise2.kr(2,1.5,1.5),
|
||
|
LFNoise2.kr(2,0.5,1.5),
|
||
|
LFNoise2.kr(2,0.5,1.5)
|
||
|
) * 0.2 }.play(s);
|
||
|
)
|
||
|
::
|
||
|
|
||
|
code::
|
||
|
(
|
||
|
{ LatoocarfianL.ar(
|
||
|
SampleRate.ir/4,
|
||
|
[LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3,
|
||
|
LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2),
|
||
|
[LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3,
|
||
|
LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2),
|
||
|
[LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3,
|
||
|
LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2),
|
||
|
[LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3,
|
||
|
LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2)
|
||
|
) * 0.2 !2}.play;
|
||
|
)
|
||
|
::
|