init.scm 21.9 KB
Newer Older
Dave Griffiths's avatar
Dave Griffiths committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
;    Initialization file for TinySCHEME 1.39

; Per R5RS, up to four deep compositions should be defined
(define (caar x) (car (car x)))
(define (cadr x) (car (cdr x)))
(define (cdar x) (cdr (car x)))
(define (cddr x) (cdr (cdr x)))
(define (caaar x) (car (car (car x))))
(define (caadr x) (car (car (cdr x))))
(define (cadar x) (car (cdr (car x))))
(define (caddr x) (car (cdr (cdr x))))
(define (cdaar x) (cdr (car (car x))))
(define (cdadr x) (cdr (car (cdr x))))
(define (cddar x) (cdr (cdr (car x))))
(define (cdddr x) (cdr (cdr (cdr x))))
(define (caaaar x) (car (car (car (car x)))))
(define (caaadr x) (car (car (car (cdr x)))))
(define (caadar x) (car (car (cdr (car x)))))
(define (caaddr x) (car (car (cdr (cdr x)))))
(define (cadaar x) (car (cdr (car (car x)))))
(define (cadadr x) (car (cdr (car (cdr x)))))
(define (caddar x) (car (cdr (cdr (car x)))))
(define (cadddr x) (car (cdr (cdr (cdr x)))))
(define (cdaaar x) (cdr (car (car (car x)))))
(define (cdaadr x) (cdr (car (car (cdr x)))))
(define (cdadar x) (cdr (car (cdr (car x)))))
(define (cdaddr x) (cdr (car (cdr (cdr x)))))
(define (cddaar x) (cdr (cdr (car (car x)))))
(define (cddadr x) (cdr (cdr (car (cdr x)))))
(define (cdddar x) (cdr (cdr (cdr (car x)))))
(define (cddddr x) (cdr (cdr (cdr (cdr x)))))

;;;; Utility to ease macro creation
(define (macro-expand form)
     ((eval (get-closure-code (eval (car form)))) form))

(define (macro-expand-all form)
   (if (macro? form)
      (macro-expand-all (macro-expand form))
      form))

(define *compile-hook* macro-expand-all)


(macro (unless form)
     `(if (not ,(cadr form)) (begin ,@(cddr form))))

(macro (when form)
     `(if ,(cadr form) (begin ,@(cddr form))))

; DEFINE-MACRO Contributed by Andy Gaynor
(macro (define-macro dform)
  (if (symbol? (cadr dform))
    `(macro ,@(cdr dform))
    (let ((form (gensym)))
      `(macro (,(caadr dform) ,form)
         (apply (lambda ,(cdadr dform) ,@(cddr dform)) (cdr ,form))))))

; Utilities for math. Notice that inexact->exact is primitive,
; but exact->inexact is not.
(define exact? integer?)
(define (inexact? x) (and (real? x) (not (integer? x))))
(define (even? n) (= (remainder n 2) 0))
(define (odd? n) (not (= (remainder n 2) 0)))
(define (zero? n) (= n 0))
(define (positive? n) (> n 0))
(define (negative? n) (< n 0))
(define complex? number?)
(define rational? real?)
(define (abs n) (if (>= n 0) n (- n)))
(define (exact->inexact n) (* n 1.0))
(define (<> n1 n2) (not (= n1 n2)))
(define (max . lst)
     (foldr (lambda (a b) (if (> a b) a b)) (car lst) (cdr lst)))
(define (min . lst)
     (foldr (lambda (a b) (if (< a b) a b)) (car lst) (cdr lst)))
(define (succ x) (+ x 1))
(define (pred x) (- x 1))
(define gcd
  (lambda a
    (if (null? a)
      0
      (let ((aa (abs (car a)))
            (bb (abs (cadr a))))
         (if (= bb 0)
              aa
              (gcd bb (remainder aa bb)))))))
(define lcm
  (lambda a
    (if (null? a)
      1
      (let ((aa (abs (car a)))
            (bb (abs (cadr a))))
         (if (or (= aa 0) (= bb 0))
             0
             (abs (* (quotient aa (gcd aa bb)) bb)))))))


(define (string . charlist)
     (list->string charlist))

(define (list->string charlist)
     (let* ((len (length charlist))
            (newstr (make-string len))
            (fill-string!
               (lambda (str i len charlist)
                    (if (= i len)
                         str
                         (begin (string-set! str i (car charlist))
                         (fill-string! str (+ i 1) len (cdr charlist)))))))
          (fill-string! newstr 0 len charlist)))

(define (string-fill! s e)
     (let ((n (string-length s)))
          (let loop ((i 0))
               (if (= i n)
                    s
                    (begin (string-set! s i e) (loop (succ i)))))))

(define (string->list s)
     (let loop ((n (pred (string-length s))) (l '()))
          (if (= n -1)
               l
               (loop (pred n) (cons (string-ref s n) l)))))

(define (string-copy str)
     (string-append str))

(define (string->anyatom str pred)
     (let* ((a (string->atom str)))
       (if (pred a) a
     (error "string->xxx: not a xxx" a))))

(define (string->number str) (string->anyatom str number?))

(define (anyatom->string n pred)
  (if (pred n)
      (atom->string n)
      (error "xxx->string: not a xxx" n)))


(define (number->string n) (anyatom->string n number?))

(define (char-cmp? cmp a b)
     (cmp (char->integer a) (char->integer b)))
(define (char-ci-cmp? cmp a b)
     (cmp (char->integer (char-downcase a)) (char->integer (char-downcase b))))

(define (char=? a b) (char-cmp? = a b))
(define (char<? a b) (char-cmp? < a b))
(define (char>? a b) (char-cmp? > a b))
(define (char<=? a b) (char-cmp? <= a b))
(define (char>=? a b) (char-cmp? >= a b))

(define (char-ci=? a b) (char-ci-cmp? = a b))
(define (char-ci<? a b) (char-ci-cmp? < a b))
(define (char-ci>? a b) (char-ci-cmp? > a b))
(define (char-ci<=? a b) (char-ci-cmp? <= a b))
(define (char-ci>=? a b) (char-ci-cmp? >= a b))

; Note the trick of returning (cmp x y)
(define (string-cmp? chcmp cmp a b)
     (let ((na (string-length a)) (nb (string-length b)))
          (let loop ((i 0))
               (cond
                    ((= i na)
                         (if (= i nb) (cmp 0 0) (cmp 0 1)))
                    ((= i nb)
                         (cmp 1 0))
                    ((chcmp = (string-ref a i) (string-ref b i))
                         (loop (succ i)))
                    (else
                         (chcmp cmp (string-ref a i) (string-ref b i)))))))


(define (string=? a b) (string-cmp? char-cmp? = a b))
(define (string<? a b) (string-cmp? char-cmp? < a b))
(define (string>? a b) (string-cmp? char-cmp? > a b))
(define (string<=? a b) (string-cmp? char-cmp? <= a b))
(define (string>=? a b) (string-cmp? char-cmp? >= a b))

(define (string-ci=? a b) (string-cmp? char-ci-cmp? = a b))
(define (string-ci<? a b) (string-cmp? char-ci-cmp? < a b))
(define (string-ci>? a b) (string-cmp? char-ci-cmp? > a b))
(define (string-ci<=? a b) (string-cmp? char-ci-cmp? <= a b))
(define (string-ci>=? a b) (string-cmp? char-ci-cmp? >= a b))

(define (list . x) x)

(define (foldr f x lst)
     (if (null? lst)
          x
          (foldr f (f x (car lst)) (cdr lst))))

(define (unzip1-with-cdr . lists)
  (unzip1-with-cdr-iterative lists '() '()))

(define (unzip1-with-cdr-iterative lists cars cdrs)
  (if (null? lists)
      (cons cars cdrs)
      (let ((car1 (caar lists))
      (cdr1 (cdar lists)))
  (unzip1-with-cdr-iterative
   (cdr lists)
   (append cars (list car1))
   (append cdrs (list cdr1))))))

(define (map proc . lists)
  (if (null? lists)
      (apply proc)
      (if (null? (car lists))
    '()
    (let* ((unz (apply unzip1-with-cdr lists))
     (cars (car unz))
     (cdrs (cdr unz)))
      (cons (apply proc cars) (apply map (cons proc cdrs)))))))

(define (for-each proc . lists)
  (if (null? lists)
      (apply proc)
      (if (null? (car lists))
    #t
    (let* ((unz (apply unzip1-with-cdr lists))
     (cars (car unz))
     (cdrs (cdr unz)))
      (apply proc cars) (apply map (cons proc cdrs))))))

(define (list-tail x k)
    (if (zero? k)
        x
        (list-tail (cdr x) (- k 1))))

(define (list-ref x k)
    (car (list-tail x k)))

(define (last-pair x)
    (if (pair? (cdr x))
        (last-pair (cdr x))
        x))

(define (head stream) (car stream))

(define (tail stream) (force (cdr stream)))

(define (vector-equal? x y)
     (and (vector? x) (vector? y) (= (vector-length x) (vector-length y))
          (let ((n (vector-length x)))
               (let loop ((i 0))
                    (if (= i n)
                         #t
                         (and (equal? (vector-ref x i) (vector-ref y i))
                              (loop (succ i))))))))

(define (list->vector x)
     (apply vector x))

(define (vector-fill! v e)
     (let ((n (vector-length v)))
          (let loop ((i 0))
               (if (= i n)
                    v
                    (begin (vector-set! v i e) (loop (succ i)))))))

(define (vector->list v)
     (let loop ((n (pred (vector-length v))) (l '()))
          (if (= n -1)
               l
               (loop (pred n) (cons (vector-ref v n) l)))))

;; The following quasiquote macro is due to Eric S. Tiedemann.
;;   Copyright 1988 by Eric S. Tiedemann; all rights reserved.
;;
;; Subsequently modified to handle vectors: D. Souflis

(macro
 quasiquote
 (lambda (l)
   (define (mcons f l r)
     (if (and (pair? r)
              (eq? (car r) 'quote)
              (eq? (car (cdr r)) (cdr f))
              (pair? l)
              (eq? (car l) 'quote)
              (eq? (car (cdr l)) (car f)))
         (if (or (procedure? f) (number? f) (string? f))
               f
               (list 'quote f))
         (if (eqv? l vector)
               (apply l (eval r))
               (list 'cons l r)
               )))
   (define (mappend f l r)
     (if (or (null? (cdr f))
             (and (pair? r)
                  (eq? (car r) 'quote)
                  (eq? (car (cdr r)) '())))
         l
         (list 'append l r)))
   (define (foo level form)
     (cond ((not (pair? form))
               (if (or (procedure? form) (number? form) (string? form))
                    form
                    (list 'quote form))
               )
           ((eq? 'quasiquote (car form))
            (mcons form ''quasiquote (foo (+ level 1) (cdr form))))
           (#t (if (zero? level)
                   (cond ((eq? (car form) 'unquote) (car (cdr form)))
                         ((eq? (car form) 'unquote-splicing)
                          (error "Unquote-splicing wasn't in a list:"
                                 form))
                         ((and (pair? (car form))
                               (eq? (car (car form)) 'unquote-splicing))
                          (mappend form (car (cdr (car form)))
                                   (foo level (cdr form))))
                         (#t (mcons form (foo level (car form))
                                         (foo level (cdr form)))))
                   (cond ((eq? (car form) 'unquote)
                          (mcons form ''unquote (foo (- level 1)
                                                     (cdr form))))
                         ((eq? (car form) 'unquote-splicing)
                          (mcons form ''unquote-splicing
                                      (foo (- level 1) (cdr form))))
                         (#t (mcons form (foo level (car form))
                                         (foo level (cdr form)))))))))
   (foo 0 (car (cdr l)))))

;;;;;Helper for the dynamic-wind definition.  By Tom Breton (Tehom)
(define (shared-tail x y)
   (let (  (len-x (length x))
	   (len-y (length y)))
      (define (shared-tail-helper x y)
	 (if
	    (eq? x y)
	    x
	    (shared-tail-helper (cdr x) (cdr y))))
      (cond
	 ((> len-x len-y)
	    (shared-tail-helper
	       (list-tail x (- len-x len-y))
	       y))
	 ((< len-x len-y)
	    (shared-tail-helper
	       x
	       (list-tail y (- len-y len-x))))
	 (#t (shared-tail-helper x y)))))

;;;;;Dynamic-wind by Tom Breton (Tehom)

;;Guarded because we must only eval this once, because doing so
;;redefines call/cc in terms of old call/cc
(unless (defined? 'dynamic-wind)
   (let
      ;;These functions are defined in the context of a private list of
      ;;pairs of before/after procs.
      (  (*active-windings* '())
	 ;;We'll define some functions into the larger environment, so
	 ;;we need to know it.
	 (outer-env (current-environment)))

      ;;Poor-man's structure operations
      (define before-func car)
      (define after-func  cdr)
      (define make-winding cons)

      ;;Manage active windings
      (define (activate-winding! new)
	 ((before-func new))
	 (set! *active-windings* (cons new *active-windings*)))
      (define (deactivate-top-winding!)
	 (let ((old-top (car *active-windings*)))
	    ;;Remove it from the list first so it's not active during its
	    ;;own exit.
	    (set! *active-windings* (cdr *active-windings*))
	    ((after-func old-top))))

      (define (set-active-windings! new-ws)
	 (unless (eq? new-ws *active-windings*)
	    (let ((shared (shared-tail new-ws *active-windings*)))

	       ;;Define the looping functions.
	       ;;Exit the old list.  Do deeper ones last.  Don't do
	       ;;any shared ones.
	       (define (pop-many)
		  (unless (eq? *active-windings* shared)
		     (deactivate-top-winding!)
		     (pop-many)))
	       ;;Enter the new list.  Do deeper ones first so that the
	       ;;deeper windings will already be active.  Don't do any
	       ;;shared ones.
	       (define (push-many new-ws)
		  (unless (eq? new-ws shared)
		     (push-many (cdr new-ws))
		     (activate-winding! (car new-ws))))

	       ;;Do it.
	       (pop-many)
	       (push-many new-ws))))

      ;;The definitions themselves.
      (eval
	 `(define call-with-current-continuation
	     ;;It internally uses the built-in call/cc, so capture it.
	     ,(let ((old-c/cc call-with-current-continuation))
		 (lambda (func)
		    ;;Use old call/cc to get the continuation.
		    (old-c/cc
		       (lambda (continuation)
			  ;;Call func with not the continuation itself
			  ;;but a procedure that adjusts the active
			  ;;windings to what they were when we made
			  ;;this, and only then calls the
			  ;;continuation.
			  (func
			     (let ((current-ws *active-windings*))
				(lambda (x)
				   (set-active-windings! current-ws)
				   (continuation x)))))))))
	 outer-env)
      ;;We can't just say "define (dynamic-wind before thunk after)"
      ;;because the lambda it's defined to lives in this environment,
      ;;not in the global environment.
      (eval
	 `(define dynamic-wind
	     ,(lambda (before thunk after)
		 ;;Make a new winding
		 (activate-winding! (make-winding before after))
		 (let ((result (thunk)))
		    ;;Get rid of the new winding.
		    (deactivate-top-winding!)
		    ;;The return value is that of thunk.
		    result)))
	 outer-env)))

(define call/cc call-with-current-continuation)


;;;;; atom? and equal? written by a.k

;;;; atom?
(define (atom? x)
  (not (pair? x)))

;;;;    equal?
(define (equal? x y)
     (cond
          ((pair? x)
               (and (pair? y)
                    (equal? (car x) (car y))
                    (equal? (cdr x) (cdr y))))
          ((vector? x)
               (and (vector? y) (vector-equal? x y)))
          ((string? x)
               (and (string? y) (string=? x y)))
          (else (eqv? x y))))

;;;; (do ((var init inc) ...) (endtest result ...) body ...)
;;
(macro do
  (lambda (do-macro)
    (apply (lambda (do vars endtest . body)
             (let ((do-loop (gensym)))
               `(letrec ((,do-loop
                           (lambda ,(map (lambda (x)
                                           (if (pair? x) (car x) x))
                                      `,vars)
                             (if ,(car endtest)
                               (begin ,@(cdr endtest))
                               (begin
                                 ,@body
                                 (,do-loop
                                   ,@(map (lambda (x)
                                            (cond
                                              ((not (pair? x)) x)
                                              ((< (length x) 3) (car x))
                                              (else (car (cdr (cdr x))))))
                                       `,vars)))))))
                  (,do-loop
                    ,@(map (lambda (x)
                             (if (and (pair? x) (cdr x))
                               (car (cdr x))
                               '()))
                        `,vars)))))
      do-macro)))

;;;; generic-member
(define (generic-member cmp obj lst)
  (cond
    ((null? lst) #f)
    ((cmp obj (car lst)) lst)
    (else (generic-member cmp obj (cdr lst)))))

(define (memq obj lst)
     (generic-member eq? obj lst))
(define (memv obj lst)
     (generic-member eqv? obj lst))
(define (member obj lst)
     (generic-member equal? obj lst))

;;;; generic-assoc
(define (generic-assoc cmp obj alst)
     (cond
          ((null? alst) #f)
          ((cmp obj (caar alst)) (car alst))
          (else (generic-assoc cmp obj (cdr alst)))))

(define (assq obj alst)
     (generic-assoc eq? obj alst))
(define (assv obj alst)
     (generic-assoc eqv? obj alst))
(define (assoc obj alst)
     (generic-assoc equal? obj alst))

(define (acons x y z) (cons (cons x y) z))

;;;; Handy for imperative programs
;;;; Used as: (define-with-return (foo x y) .... (return z) ...)
(macro (define-with-return form)
     `(define ,(cadr form)
          (call/cc (lambda (return) ,@(cddr form)))))

;;;; Simple exception handling
;
;    Exceptions are caught as follows:
;
;         (catch (do-something to-recover and-return meaningful-value)
;              (if-something goes-wrong)
;              (with-these calls))
;
;    "Catch" establishes a scope spanning multiple call-frames
;    until another "catch" is encountered.
;
;    Exceptions are thrown with:
;
;         (throw "message")
;
;    If used outside a (catch ...), reverts to (error "message)

(define *handlers* (list))

(define (push-handler proc)
     (set! *handlers* (cons proc *handlers*)))

(define (pop-handler)
     (let ((h (car *handlers*)))
          (set! *handlers* (cdr *handlers*))
          h))

(define (more-handlers?)
     (pair? *handlers*))

(define (throw . x)
     (if (more-handlers?)
          (apply (pop-handler))
          (apply error x)))

(macro (catch form)
     (let ((label (gensym)))
          `(call/cc (lambda (exit)
               (push-handler (lambda () (exit ,(cadr form))))
               (let ((,label (begin ,@(cddr form))))
                    (pop-handler)
                    ,label)))))

(define *error-hook* throw)


;;;;; Definition of MAKE-ENVIRONMENT, to be used with two-argument EVAL

(macro (make-environment form)
     `(apply (lambda ()
               ,@(cdr form)
               (current-environment))))

(define-macro (eval-polymorphic x . envl)
  (display envl)
  (let* ((env (if (null? envl) (current-environment) (eval (car envl))))
         (xval (eval x env)))
    (if (closure? xval)
  (make-closure (get-closure-code xval) env)
  xval)))

; Redefine this if you install another package infrastructure
; Also redefine 'package'
(define *colon-hook* eval)

;;;;; I/O

(define (input-output-port? p)
     (and (input-port? p) (output-port? p)))

(define (close-port p)
     (cond
          ((input-output-port? p) (close-input-port (close-output-port p)))
          ((input-port? p) (close-input-port p))
          ((output-port? p) (close-output-port p))
          (else (throw "Not a port" p))))

(define (call-with-input-file s p)
     (let ((inport (open-input-file s)))
          (if (eq? inport #f)
               #f
               (let ((res (p inport)))
                    (close-input-port inport)
                    res))))

(define (call-with-output-file s p)
     (let ((outport (open-output-file s)))
          (if (eq? outport #f)
               #f
               (let ((res (p outport)))
                    (close-output-port outport)
                    res))))

(define (with-input-from-file s p)
     (let ((inport (open-input-file s)))
          (if (eq? inport #f)
               #f
               (let ((prev-inport (current-input-port)))
                    (set-input-port inport)
                    (let ((res (p)))
                         (close-input-port inport)
                         (set-input-port prev-inport)
                         res)))))

(define (with-output-to-file s p)
     (let ((outport (open-output-file s)))
          (if (eq? outport #f)
               #f
               (let ((prev-outport (current-output-port)))
                    (set-output-port outport)
                    (let ((res (p)))
                         (close-output-port outport)
                         (set-output-port prev-outport)
                         res)))))

(define (with-input-output-from-to-files si so p)
     (let ((inport (open-input-file si))
           (outport (open-input-file so)))
          (if (not (and inport outport))
               (begin
                    (close-input-port inport)
                    (close-output-port outport)
                    #f)
               (let ((prev-inport (current-input-port))
                     (prev-outport (current-output-port)))
                    (set-input-port inport)
                    (set-output-port outport)
                    (let ((res (p)))
                         (close-input-port inport)
                         (close-output-port outport)
                         (set-input-port prev-inport)
                         (set-output-port prev-outport)
                         res)))))

; Random number generator (maximum cycle)
(define *seed* 1)
(define (random-next)
     (let* ((a 16807) (m 2147483647) (q (quotient m a)) (r (modulo m a)))
          (set! *seed*
               (-   (* a (- *seed*
                         (* (quotient *seed* q) q)))
                    (* (quotient *seed* q) r)))
          (if (< *seed* 0) (set! *seed* (+ *seed* m)))
          *seed*))
;; SRFI-0
;; COND-EXPAND
;; Implemented as a macro
(define *features* '(srfi-0))

(define-macro (cond-expand . cond-action-list)
  (cond-expand-runtime cond-action-list))

(define (cond-expand-runtime cond-action-list)
  (if (null? cond-action-list)
      #t
      (if (cond-eval (caar cond-action-list))
          `(begin ,@(cdar cond-action-list))
          (cond-expand-runtime (cdr cond-action-list)))))

(define (cond-eval-and cond-list)
  (foldr (lambda (x y) (and (cond-eval x) (cond-eval y))) #t cond-list))

(define (cond-eval-or cond-list)
  (foldr (lambda (x y) (or (cond-eval x) (cond-eval y))) #f cond-list))

(define (cond-eval condition)
  (cond ((symbol? condition)
   (if (member condition *features*) #t #f))
  ((eq? condition #t) #t)
  ((eq? condition #f) #f)
  (else (case (car condition)
    ((and) (cond-eval-and (cdr condition)))
    ((or) (cond-eval-or (cdr condition)))
    ((not) (if (not (null? (cddr condition)))
         (error "cond-expand : 'not' takes 1 argument")
         (not (cond-eval (cadr condition)))))
    (else (error "cond-expand : unknown operator" (car condition)))))))

(gc-verbose #f)